Objective To observe visual field outcome and refractive status of patients with retinopathy of prematurity (ROP) treated by laser photocoagulation. Method The data of 39 ROP patients (73 eyes) who received laser photocoagulation were retrospectively analyzed and compared with 13 normal control subjects (25 eyes) whose age and sex were matched with ROP group. There were 24 males (45 eyes) and 15 females (28 eyes) in ROP group, with an average age of (7.0±1.28) years. The first laser treatment was carried out at postnatal age (PA) of (38.74±3.82) weeks, the birth weight (BW) of (1402.33±369.61) g and the number of laser burns was (517.86±277.40). The control group included 7 females (13 eyes) and 6 males (12 eyes), with an average age of (7.17±0.96) years. The age (t=0.691) and gender (χ2=1.425) were comparable between the two groups (P=0.491, 0.233). The data of patients and controls were retrospectively analyzed including best corrected visual acuity, refractive examination, automated perimetry test. The differences of the mean deviation (MD) of visual field and the spherical equivalent (SE) between these two groups were comparatively observed. ROP patients were divided into no VF loss group (MD≤2 dB) and VF loss group (MD>2 dB), mild VF loss group (MD≤6 dB) and moderate VF loss group (MD>6 dB) according to the results of automated perimetry test, the differences of gestational age (GA), PA, BW, number of laser burns and SE between these groups were comparatively observed. Results The MD in ROP group and control group were 4.87±5.12 dB and 1.27±3.34 dB, respectively; the difference between the two groups was statistically significant (t=–4.01,P<0.001). The subgroup analysis showed that BW, number of laser burns, and SE were significantly different between no VF loss group and VF loss group (t=2.074, –1.996, –2.162;P=0.042, 0.026, 0.034); while the GA was not significantly different between these two groups (t=1.973,P=0.052). The difference of PA was not statistical significant different between mild VF loss group and moderate VF loss group (t=2.03,P=0.051) and SE was significantly different between the above two groups (t=3.283,P=0.002). For refractive outcomes, the BW and ROP stage correlated with SE significantly (r=–0.304, –0.387;P=0.015, 0.002). The mean BCVA in ROP group was 0.84±0.23, and 59 eyes (91.2%) with BCVA better than 0.5. Conclusion Laser treatment for ROP tends to have less effect on long term refractive status and VF loss, with good visual outcome.
Objective To verify the effects of the treatment of krypton yellow laser for diabetic macular edema.Methods A total of 430 eyes in 251 cases of diabetic focal macular edema, diffuse edema and cystoid edema were treated with krypton yellow laser photocoagulation. Those with focal macular edema underwent the focal photocoagulation, and those with diffuse edema and cystoid edema underwent the grid photocoagulation.The visual acuity examination, fundus fluoresec in angiography and colour photography of the fundus were performed before and every 3 or 4 months after the treatment.The changes of macular edema after the treatment were analysed.The follow-up duration was 3 to 23 months (with an average of 15.5 months). Results After laser focal photocoagulation in 186 eyes with focal macular edema, visual acuity was improved or maintained in 183 eyes (98.39% ). Edema disappeared completely or partially in 184 eyes (98.93%). After laser grid photocoagulation in 175 eyes with diffuse macular edema, visual acuity was improved or maintained in 163 eyes (93.14%). Edema disappeared completely or partially in 164 eyes (93.71%). After laser grid photocoagulation in 69 eyes with cystoid macular edema, visual acuity was improved or maintained in 59 eyes (85.5% ). Edema disappeared completely or partially in 64 eyes (92.75%).Conclusion The linchpin of the treatment of krypton yellow laser for diabetic macular edema lies in the insurance of the effective laser macules and the adaptability of selecting the proper parameter of laser according to the degree and scope of the macular edema and the visual acuity. (Chin J Ocul Fundus Dis,2003,19:14-17)
ObjectiveTo observe the efficacy and safety of combination of intravitreal injection of ranibizumab and laser photocoagulation for the treatment of aggressive posterior retinopathy of prematurity (AP-ROP). MethodsMedical records of 70 eyes of 35 premature infants with a primary diagnosis of AP-ROP in our clinic were reviewed and analyzed retrospectively. All the lesions were located in posterior zone, with 42 eyes in zone 1 and 28 eyes in zone 2. Forty-six eyes had iris neovascularization, while 19 eyes combined with vitreous hemorrhage. All participants underwent intravitreal injection of ranibizumab as the primary treatment within 12 hours after diagnosis of AP-ROP. The systemic and ocular adverse effects were observed. The change of retinal vascular tortuosity and dilatation before and after the intravitreal injection of ranibizumab was observed one week after injection. Laser photocoagulation was used as adjuvant therapy if the plus disease persisted more than two weeks or new-onset ridge occurred after injection. The mean time interval between injection and laser therapy was (5.1±2.6) weeks (range, 1-10 weeks). Follow-up ranged from 6 to 18 months, with a mean of (10.3±3.9) months. The anatomical results and complications were evaluated after treatment. The eyes that progressed to stage 4 or 5 during the follow-ups were underwent lens-sparing vitrectomy or lensectomy combined with vitrectomy. ResultsNo major systemic or ocular complications were observed. Preretinal hemorrhages were found in 12 eyes of 8 patients (17.1%), but they were absorbed spontaneously during the follow-ups. All lens remained transparent and no iatrogenic retinal hole was occurred during the follow-ups. After the injection, the regression of iris neovascularization was observed in 46 eyes within one week, vitreous hemorrhage absorbed significantly in 16 eyes (84.2%), and plus disease disappeared completely within one week in 61 eyes (87.1%). 59 eyes (84.3%) demonstrated vascularization toward the peripheral retina after treatment. 32 out of 42 eyes (76.2%) with zone 1 demonstrated vascularization toward to zone 2, while 24 out of 28 eyes (85.7%) with zone 2 demonstrated vascularization toward to the junction of zone 2 and 3. After intravitreal injection of ranibizumab combined with laser photocoagulation, 62 of 70 eyes (88.6%) had retinal vascular ridge and plus disease regression. However, 8 eyes of 6 patients (11.4%) showed significant fibrovascular proliferation and progressed to retinal detachment after the combination treatment of intravitreal ranibizumab injection and laser photocoagulation. Four eyes underwent lens-sparing vitrectomy, while the other 4 eyes underwent vitrectomy combined with lensectomy. Five eyes achieved totally retinal reattachment after surgery, while 3 eyes achieved partially retinal reattachment. ConclusionThe combination of intravitreal injection of ranibizumab and laser photocoagulation is safe and effective in the treatment of AP-ROP.
ObjectiveTo observe the effect of retinal hemorrhage on the treatment of retinopathy of prematurity (ROP) by laser photocoagulation.MethodsRetrospective case analysis. Screening and diagnosis of 134 eyes in 67 patients with ROP in Zone Ⅱ Stage 3+ were included in the study. Among them, 32 patients were male and 35 patients were female. The average birth gestational age was 27.80±2.55 weeks. The average birth weight was 1060±320 g. All children underwent binocular indirect ophthalmoscopy and RetCam Ⅲ. Of the 134 eyes, 38 eyes (28%) with anterior, ridge or vitreous hemorrhage (group A); 96 eyes (72%) without hemorrhage. Retinal avascular photocoagulation was performed within 72 hours after diagnosis by intravenous sedative combined with ocular surface anesthesia with 810 nm laser. Follow-up was performed at 1, 4, 8 and 12 weeks after treatment, and then every 6 months thereafter. The same equipment and methods before treatment were used to examine and document the regression and progression of ROP. The number of eyes with lesions after photocoagulation in the two groups was compared by χ2 test. The t-test was used to compare the gestational age and birth weight.ResultsAmong 134 eyes, lesions completely resolved in 125 eyes (93.3%), progressed in 9 eyes (6.7%). In group A, 7 eyes were progressive (18.4%). In group B, 2 eyes were progressive (2.1%). There was a statistically significant difference in the number of eyes with lesions after laser treatment in group A and B (χ2=9.14, P=0.003). There was no significant difference in birth gestational age and birth weight (t=0.85, 0.25; P=0.40, 0.80).ConclusionThe laser photocoagulation is safe and effective in the treatment of ROP. The preretinal, ridge or vitreous hemorrhage is related to the progression of the lesion after laser photocoagulation.