Objective To explore the clinical application value of multifocal oscillatory potentials (MOPs) in retinal vein occlusion (RVO). Methods MOPs were tested using VERIS 4.0 visual evoked response imaging system for 19 cases (19 eyes) of RVO,among them 8 cases of central retinal vein occlusion (CRVO) and 11 cases of branch retinal vein occlusion (BRVO). Twenty normal subjects were as normal control group. The stimulative visual angles subtended ±26.6°horizontally and ±22.1°vertically. The filter setting was bandpass 100~1000 Hz. The retinal responses from 103 hexagons were recorded in 4 min (8 segments). Results In normal control group, OP-1, OP-2 and OP-3 were recorded during 37 ms for first order and 47 ms for second order first slice in whole test field and 5 ring retinal regions, the oscillatory wave shapes of second order were clearer than those of first order. In RVO groups, 91.6% latencies of OP-1, OP-2 and OP-3 were delayed, and 70.8% amplitudes of OP-1, OP-2 and OP-3 were reduced. The delay of the latencies and the decrease of the amplitude in CRVO were more markedly than those in BRVO. Conclusion MOPs can be effectively and quantitatively used to evaluate the retinal function of the different location in RVO. (Chin J Ocul Fundus Dis,2002,18:20-22)
Objective To observe the angiographic features of patients with retinal vein occlusion (RVO) by ultra-wide-field fluorescein angiography (UWFA) and compare with the conventional 7 standard field (7SF) imaging. Methods This is a retrospective clinical description study. Fifty-eight eyes of 56 RVO patients were included. There were 25 males (26 eyes) and 31 females (32 eyes). The age ranged from 25 to 69 years, with a mean age of (48.12±18.56) years. The course of disease was from 2 days to 25 months, with a mean course of (12.78±11.35) months. Thirty eyes were diagnosed with central RVO (51.72%), 26 eyes were diagnosed with branch RVO (44.83%) and 2 eyes were diagnosed with hemicentral RVO (3.45%). Retinal laser photocoagulation was performed in 11 eyes (18.97%). All patients received examinations of UWFA (British Optomap 200Tx imaging system) and optical coherence tomography (OCT). Using the protocol for obtaining 7SF images as described in the Early Treatment Diabetic Retinopathy Study, 7 circular regions with a range of 30 degrees were combined as the 7SF template to determine the observation area. This template was then overlaid on the UWFA image to identify the potential viewable area of 7SF. The visualized retinal area, retinal non-perfusion area, retinal neovascularization area, and laser spot area of UWFA and 7SF were quantified by a retinal specialist. In addition, the OCT images of the affected eye were observed and analyzed to confirm the existence of macular edema. Correlation analysis was done between retinal non-perfusion, retinal neovascularization and macular edema detected by UWFA. Results The results of UWFA and 7SF examination were the same. Compared with 7SF, UWFA showed 3.53 times more retinal visual area, 3.31 times more non-perfusion area, 1.94 times more neovascularization area, and 3.59 times more laser spots (t=72.13, 4.69, 1.76, 5.78;P=0.000, 0.005, 0.102, 0.000). Lesions of 11 eyes (18.97%) were found outside the range of 7SF images. By UWFA, non-perfusion area correlated with neovascularization and macular edema (χ2=12.13, 4.82;P=0.000, 0.028;C=0.42, 0.28). Non-perfusion area anterior to the equator have significantly correlations with macular edema (χ2=6.32,P=0.012,C=0.31), but non-perfusion posterior to the globe equator have no relevance with macular edema (χ2=2.88,P=0.090, C=0.22). Conclusions UWFA can detect more peripheral retinal lesions than 7SF images. By UWFA, non-perfusion area has correlation with neovascularization and macular edema.
Objective To observe the morphologic characters of macular lesions in patients with central retinal vein occlusion(CRVO) in optical coherence tomography(OCT). Methods Thirty-eight patients with the clinical diagnosis of CRVO were examined by OCT.Four scan lines traversing the fovea with the same length and the same angle gap were performed as the basic scan in every eye.Additional scan were selected according to individuals including changing the length or angle of the scan lines and selecting different diameter circle pattern scan. Results Cystoid macular edema (CME) was found in 15 eyes,detachment of the neurosensory retina in 6 eyes,thickened neurosesory retina in 11 eyes,slight intraretinal fluid in 4 eyes,and markedly thichened neurosensory retina in 2 eyes with secondary premacular membrane and intraretinal fluid. Conclusions The major OCT morphologic characters of macular lesions in patinets with CRVO may include:cystoid macular edema,detachment of neurosensory retina,and secondary premacular membrane and pigmentary epithelial changes.These would be helpful for diagnosing and evaluating macular lesion in CRVO. (Chin J Ocul Fundus Dis, 1999, 15: 201-204)
Retinal vein occlusion (RVO) is affected by multiple factors, and there are lots of misunderstanding and disputation on the diagnosis and treatment. Compared with the natural disease course of RVO, there was no safe and effective treatment for RVO at present. Necessary investigation and disputation is helpful to make objective conclusion. We should objectively analyze and evaluate the results of investigation from home and abroad. (Chin J Ocul Fundus Dis, 2007, 23: 155-158)
Objective To measure the macular function of the fellow eye in patients with unilateral retinal vein occlusion (RVO). Methods A total of 24 cases of unilateral RVO were diagnosed by fundus fluorescein angiography (FFA), and multifocal ERG (mfERG) was recorded by RETI scan. The mfERG data of 24 fellow eyes of those RVO patients, and 18 normal control eyes were analyzed and compared. The parameters included the amplitude density, latency of the P1 and N1 wave in 6 concentric circles and 4 quadrants of the mfERG graphics. Results The amplitude densities of P1 and N1 wave in first and second concentric circles of RVO fellow eyes were significantly lower than normal eyes (t=4.520, 2.147; P<0.05). There was no significant difference (P>0.05) of P1/N1 latency in any concentric circles or quadrants between RVO fellow eyes and normal eyes. Conclusion The central fovea of the RVO fellow eyes was functionally impaired.
ObjectiveTo observe the characteristics of optical coherence tomography (OCT) angiography (OCTA) in retinal vein occlusion (RVO). MethodsProspective and observational study. Clinical examination of 81 consecutive patients (86 eyes) diagnosed with RVO were included in the study, in which the branch retinal vein occlusion in 47 eyes, central retinal vein occlusion in 39 eyes. Forty-five patients were male and 36 patients were female. Aged from 28 to 76 years old, the mean age was (55.36±10.01) years old. Comprehensive optical and imaging examination were performed, including fundus photography, fundus fluorescein angiography (FFA), spectral domain OCT, en face OCT and OCTA. The retinal blood flow imaging scan mode and the optic disc blood flow imaging scan mode were performed, the scanning region in the macular area were 3 mm×3 mm, 6 mm×6 mm, 8 mm×8 mm respectively, around the optic disc were 3 mm×3 mm and 4.5 mm×4.5 mm. Each region scans 2 times. The characteristics of foveal avascular zone change, macular edema, non-perfusion and optical disc edema in OCTA and their corresponding FFA and en face OCT were observed. ResultsBy OCTA, 67 eyes (77.9%) for foveal avascular zone change, 23 eyes (26.7%) for macular edema, 40 eyes (46.5%) for non-perfusion, and 33 eyes (38.4%) for optical disc edema can be detected. The foveal avascular zone change can be indentified as the tranformation, destruction and even vanish of the arch in superfacial layer of retinal macular area, acompanied with the dilatation and thickening of capillary vessels, the occlusion and expanding of capillary vessels arounded the foveal avascular zone in the deep layer of macular area. Those performances were more clear than FFA. The main expression of macular edema was low signal and was not as clear as en face OCT. The tortuosity and expansion of retinal vessels, density decreasing and even occlusion or abnormal traffic branch of capillary vessels can be observed in non-perfusion. These observations were similar to FFA. However, pieces of highly signal identical with non-perfusion area can be detected in chroid capillary. The representation of optical disc edema was the brush-like expanding of capillary vessels aroud optical disc. ConclusionsOCTA can help for observing the abnormal changing of capillary vessels in foveal avascular zone and macular edema, non-perfusion and optical disc edema. Foveal avascular zone change showed occlusion and expanding of capillary vessels around the foveal avascular zone in the deep layer of macular area. Macular edema showed the weak signal. Non-perfusion showed tortuosity and expansion of retinal vessels, density decreasing and even occlusion or abnormal traffic branch of capillary vessels. Optical disc edema showed brush-like expanding of capillary vessels around optical disc.