目的 评价不同皮瓣、肌皮瓣修复小腿及足踝部皮肤软组织缺损的效果,探讨小腿及足踝部皮肤软组织缺损的理想修复方法。 方法 2002年6月-2010年1月,应用15种皮瓣、肌皮瓣修复128例(138处)小腿及足踝部皮肤软组织缺损。其中小腿中上段21处,小腿中下段45处,内外踝及足跟部43处,足背及前足29处。主要应用最多的皮瓣有腓肠神经营养血管皮瓣、腓肠肌内外侧头肌皮瓣、腓浅神经营养血管皮瓣和足底内侧皮瓣。修复软组织缺损范围5 cm×4 cm~23 cm×14 cm。 结果 术后135处创面Ⅰ期愈合,皮瓣完全成活;2处皮瓣部分坏死,经二次手术植皮修复;1例游离股前外侧皮瓣修复小腿中下段软组织缺损,皮瓣完全坏死,后改取对侧腓肠神经营养血管交腿皮瓣修复成活。腓肠神经营养血管皮瓣应用例数最多,成活率高,吻合血管的游离皮瓣坏死率较高。术后患者均获随访1~10年,平均23个月,皮瓣均成活良好, 无溃疡、渗液等。 结论 正确认识并选择皮瓣、肌皮瓣修复小腿及足踝部皮肤软组织缺损可提高皮瓣成活率,恢复肢体良好功能,腓肠神经营养血管皮瓣是一种修复小腿及足踝部软组织缺损的理想皮瓣。
Since Oct. 1990, the 2nd metatarso-phalangeal joint and big-toe nail composite graft with the neuro-vascular bundle was transplanted to reconstruct the thumb in 4 cases. The transplants were all survived. The follow-up through 5 months, a comparatively good function and appearance were achieved.The applied anatomy, the surgical technique and the matters needing attention were detailed.
Objective To introduce the basic research and cl inical appl ication of stem cells transplantation for treating diabetic foot. Methods The recent original articles about the stem cells transplantation for treating diabetic foot were extensively reviewed. Results Transplanted different stem cells in diabetic foot could enhanced ulceration heal ing in certain conditions, increase neovascularization and avoid amputation. Conclusion Stem cells transplantation for treating diabeticfoot may be a future approach.
OBJECTIVE To investigate the repairing method of soft tissue defect of heel, pedicled island myocutaneous flap of flexor digitorum brevis was designed. METHODS From 1984 to 1997, 26 cases with soft tissue defect of heel were adopted in the clinical trial. Among them, the were 18 males, 8 females and the age ranged from 15 to 60 years old. The area of wound ranged from 2.5 cm x 1.5 cm to 8.0 cm x 6.0 cm. RESULTS After operation, all of the flaps survived. They were followed up for 9 to 72 months. All of the flaps had primary healing except in one there was infection of peripheral of the flap. The contour of heel was satisfactory the sensation of flap was good and the weight-bearing function was also successful. CONCLUSION It was concluded that the myocutaneous flap of flexor digitorum brevis could be used to repair the soft tissue defect of heel because of its nearby position, hidden location, good recovery of skin sensation and weight-bearing function, Besides, the procedure of this operation was simple and the anti-inflammatory potential of the flap was high. However, Because of the limited donor area, the pre-operative design was important.
Stroke has the characteristics of high incidence rate, high mortality rate and high disability rate. Most patients may have some motor dysfunction after stroke, which greatly affects the normal life of patients. As a common sequela after stroke, foot drop seriously affects the walking gait of patients, limits the activities of patients, and reduces their quality of life. In recent years, repetitive peripheral magnetic stimulation (rPMS) has been used more and more in the rehabilitation of various diseases. Because rPMS is noninvasive, affordable and effective, it is accepted by many patients. This article reviews the research progress of rPMS for foot drop after stroke.
From 1984 to 1994, 236 different types of traumatic defects of foot were repaired by microsurgical tissue grafting. They included simple cutaneous flap in 187 and composite flap in 49. Among the 236 different tissue flaps, vascularized flap was used in 97 and pedicled flap in 139. The 4 fore-foot and 6 heel defects were repaired by composite skeleted cutaneous grafts with scapula and vascularized febula respectively. After the follow-up from 1 to 10 years, all the grafted tissues were survived and healed well. The functions were satisfactory, and 186 patients had resumed their original works. The key to good function following repair was to maintaion the integrity of foot structures and the sensation of the sole and heel.
Objective To systematically analyze the randomized controlled trials that compare tissue-engineered skin (TES) with conventional treatment for chronic diabetic foot ulcer (DFU) in terms of effectiveness and utilization.Methods We searched the electronic databases (PubMed, Embase, Cochrane Central Register of Controlled Trials, CBMWeb, CNKI, and VIP) in order to compare the efficiency and safety between TES and conventional treatment (CT) in the patients with DFU. In addition, we manually searched reference lists from original studies and review articles.Results Seven trials were included, which were all randomized controlled trials and had a duration of DFU over 6 weeks. There were 880 participants that met inclusion criteria in all studies, and all patients underwent pre-treatment procedures and were treated by TES (human skin equivalents, living skin equivalents or bioengineered skin, such as Graftskin, Dermagraft and Graftjacket) for 12 weeks. All trials had two groups: the treatment group and the control group, but the two trials divided the treatment groups into 3 different dosages and 2 different ulcer allocation subgroups, respectively. Meta-analysis results showed significant differences in the rate of complete wound closure (Plt;0.0001, 95%CI 0.08 to 0.20) and in the occurrence of complications and severe adverse events (P=0.008, 95%CI – 0.06 to – 0.01) between TES treated patients and conventionally treated patients. Conclusion The review shows TES improves completed closure of DFU compared with CT, and it is more effective in reducing side effects.