Objective To investigate the effect of transforming growth factor-β1 (TGF-β1) gene transfer on the biological characteristics of osteoblasts. Methods The expression of TGF-β1 in the transfected osteoblasts was detected by in situ hybridization and assay of TGF-β1 activity in the supernatant (minklung epithelium cell growth -inhibition test). The effects of gene transfer andsupernatant of the transfected osteoblasts on the proliferation and alkaline phosphatase(ALP) activity of osteoblasts were detected by 3 H-TdR and MTT. Results The results of in situ hybridization analysis suggested that the osteoblasts transfected by TGF-β1 gene could express TGF-β1 obviously. The complex medium, which was the mixture of serum-free DMEM and the activated supernatant according to 1∶1, 1∶2, 1∶4, could inhibit growth of Mv-1-Lu evidently and the ratios ofinhibition were 16.3%, 22.7%, 28.2% respectively. TGF-β1 gene transfer hadno effect on the biological characteristics of osteoblasts, but the activated supernatant of transfected osteoblasts stimulated proliferation and inhibited ALPactivity of osteoblasts. Conclusion TGF-β1 gene transfer promotes the expression of TGF-β1 and the biological characteristics of trasfected osteoblasts are stable, which is helpful for gene therapy of bone defects in vivo.
Long non-coding RNA (lncRNA) Dnm3os plays a critical role in peritendinous fibrosis and pulmonary fibrosis, but its role in the process of cardiac fibrosis is still unclear. Therefore, we carried out study by using the myocardial fibrotic tissues obtained by thoracic aortic constriction (TAC) in an early study of our group, and the in vitro cardiac fibroblast activation model induced by transforming growth factor-β1 (TGF-β1). Quantitative real-time polymerase chain reaction (RT-qPCR), Western blot, and collagen gel contraction test were used to identify the changes of activation phenotype and the expression of Dnm3os in cardiac fibroblasts. Small interfering RNA was used to silence Dnm3os to explore its role in the activation of cardiac fibroblasts. The results showed that the expression of Dnm3os was increased significantly in myocardial fibrotic tissues and in the activated cardiac fibroblasts. And the activation of cardiac fibroblasts could be alleviated by Dnm3os silencing. Furthermore, the TGF-β1/Smad2/3 pathway was activated during the process of cardiac fibroblasts activation, while was inhibited after silencing Dnm3os. The results suggest that Dnm3os silencing may affect the process of cardiac fibroblast activation by inhibiting TGF-β1/Smad2/3 signal pathway. Therefore, interfering with the expression of lncRNA Dnm3os may be a potential target for the treatment of cardiac fibrosis.
Objective To investigate the effects of adenovirus-mediated melanoma differentiation-associated gene-7 (mda-7)/IL-24 and/or adriamycin (ADM) on transplanted human hepatoma in nude mice and to explore a new way for hepatoma gene therapy combined with chemotherapy. Methods The recombinant adenovirus vector carrying Ad.mda-7 was constructed; Ad.mda-7 and/or ADM were injected into the tumor-bearing mice. Their effects on the growth of the tumor and the survival time of the mice were observed. The expressions of VEGF and TGF-β1 were detected by an immunohistochemistry method. Results Ad.mda-7 was constructed and expressed in vivo successfully. Compared with other three groups 〔control group (43.4±1.67) d, ADM group (64.2±4.14) d, Ad.mda-7 group (61.4±1.67) d〕, the mice treated with Ad.mda-7 combined with ADM had longer average survival time 〔(83.8±4.82) d, P<0.01〕; the average size of tumor treated with Ad.mda-7 combined with ADM diminished significantly compared with that treated with ADM or Ad.mda-7 separately (P<0.01). VEGF and TGF-β1 expressions of Ad.mda-7 group were (56.2±7.7)%, (35.2±4.5)%, respectively, and were lower than those in ADM group (VEGF: P<0.05; TGF-β1: P<0.01). VEGF expression of Ad.mda-7+ADM group was (37.3±5.0)%, and was significantly lower than that in other three groups (P<0.01). TGF-β1 expression of Ad.mda-7+ADM group was (31.2±3.1)% and significantly lower than that in control group and ADM group (P<0.01), however, there was no significant difference compared with Ad.mda-7 group (Pgt;0.05). Conclusion Ad.mda-7 combined with ADM has b antitumor potency and synergistic effects and suppresses the growth of human HCC xenograft in nude mice, possibly by inducing the apoptosis of hepatoma cell lines and suppressing tumor angiogenesis.
Objective To validate the mechanism of effect of hepatic artery ischemia on biliary fibrosis after liver transplantation and the prevention method. Methods Eighteen male dogs were established into the concise auto orthotopic liver transplantation models and assigned into three groups randomly: hepatic artery ischemia (HAI) group, TBB group (transferred the blood by a bridge duct ) and control group, each group contained 6 dogs. After opening portal vein, the samples were cut from liver in each group at the time of 6 h, 3 d and 14 d. The pathological modifications of intrahepatic bile ducts were observed and expression of transforming growth factor-β1 (TGF-β1) were detected in the three times. Expressions of Smad3 and phosphate-Smad3 as well as mRNA of α-smooth muscle actin (α-SMA) in intrahepatic bile ducts were detected 14 d after opening portal vein.Results Compared with control group, the collagen deposition and lumens stenosis in biliary vessel wall were more obviously in HAI group. In TBB group, the pathological modifications were slighter compared with HAI group. The positive cell index of TGF-β1 reached peak on day 3 after opening portal vein, then decreased in TBB group, and which in HAI group kept increase and was significantly higher than that in TBB group (Plt;0.05). The expression level of phosphate-Smad3 and transcriptional level of α-SMA mRNA were 1.04±0.13 and 1.12±0.55 in TBB group on day 14 after opening portal vein, which were significantly higher than those in control group (0.59±0.09 and 0.46±0.18) and lower than those in HAI group (1.82±0.18 and 1.86±0.73), the diversities among three groups were significant (Plt;0.05). There was not significant difference of expression of Smads among three groups (Pgt;0.05). Conclusions Hepatic artery ischemia could increase the deposition of collagen fibers and the transdifferentiation of myofibroblast in bile duct and result in the biliary fibrosis by activating the TGF-β1/Smads signaling pathway. The bridging bypass device could lessen the biliary fibrosis caused by hepatic artery ischemia by inhibiting the activation of TGF-β1/Smads signal transduction passageway.
OBJECTIVE: To investigate the effects of basic fibroblast growth factor (bFGF) on the promoter activities of human alpha 1(I) procollagen gene and the interaction between bFGF and transforming growth factor-beta 1 (TGF-beta 1). METHODS: Fibroblasts of the hypertrophic scar and normal skin from a 3-year-old patient were primarily cultured and subcultured in vitro. Both of the fibroblasts were transient transfected with phCOL 2.5, containing -2.5 kb of 5’f lank sequence of human alpha 1(I) procollagen gene and CAT reporter gene by FuGENE transfection reagent; and treated thereafter by 16 ng/ml bFGF, 2 ng/ml TGF-beta 1 and 16 ng/ml bFGF + 2 ng/ml TGF beta 1 for 24 hours. The relative CAT expression values were determined by CAT-ELISA. RESULTS: TGF-beta 1 bly induced the CAT expression level, however, bFGF not only inhibited the basal CAT expression but also reduced the CAT expression up-regulated by TGF-beta 1 in normal skin and hypertrophic scar fibroblasts (P lt; 0.05). CONCLUSION: bFGF can reduce the promoter activities of human alpha 1(I) procollagen gene and antagonize the role of TGF-beta 1 in up-regulating the promoter activities of human alpha 1(I) procollagen gene in normal skin and hyertrophic scar fibroblasts.
Objective To study the influence of transforming growth factor-β1(TGF-β1), dentin non-collagen proteins(dNCPs) and their complexon tissue engineering pulp system. Methods Collagen I and dentin powder were used to construct the system of pulp cells in 3dimensional culture, dentin powder was added in the gel. The tissue engineering pulp were divided TGF-β1 group, dNCPs group, TGF-β1/dNCPsgroup and control group.After3, 6 and 14 days, the appearance and the differentiation of pulp cells were observed by HE staining and immunohistochemical staining -respectively. Results Collagen I could form netted collagen gel construction. Growing condition of pulp cells in gel was similar to that of pulp cells in vivo. After the TGF-β1 and dNCPswere added, the pulp cells had some characteristics of odontoblasts and had unilateral cell process after culture 6 days. Pulp cells arranged with parallel columnar and form dentin-pulp-like complex after 14 days. Immunohistochemical staining showed dentin salivary protein(DSP) began to express in some cells.The number of positive cell was most in the TGF-β1 group. No positive cells were detected in the control group. Conclusion The transforming growth factor-β1 and noncollagen proteins can stimulate the pulp cells to transform into odontoblasts to some extent, which promote the formation of tissue engineering pulp.
目的 研究胃癌细胞SGC-7901培养上清液及转化生长因子-β1(TGF-β1)是否可促进人类腹膜间皮细胞表达βig-h3蛋白。方法 培养胃癌细胞SGC-7901,取第3天培养液上清与DMEM培养液的混合液 (1∶4)以及0、1.0、10.0和50.0ng/ml的 TGF-β1分别刺激人类腹膜间皮细胞HMrSV50、3、6、12及24h,ELISA方法检测上清液中βig-h3蛋白浓度,Western blot法检测细胞内βig-h3蛋白浓度。结果 对照组有基础量的βig-h3蛋白表达; 胃癌细胞SGC-7901培养上清液及TGF-β1均可明显增加HMrSV5细胞上清液及细胞内的βig-h3蛋白浓度(P<0.05),且TGF-β1的刺激作用呈时间及浓度依赖性。结论 胃癌细胞SGC-7901培养上清液及TGF-β1可明显刺激HMrSV5细胞表达和分泌βig-h3蛋白。
ObjectiveTo explore the expressions of prostaglandin F2α receptor (PTGFR) and cyclooxygenase-2 (COX-2) in tissues of benign bile duct scar and their significances, and investigate the regulating effect of transforming growth factor-β1 (TGF-β1) on the expression of PTGFR in human bile duct fibroblasts cultured in vitro. MethodsThe samples of common bile duct (CBD) scars were collected from 18 patients with benign bile duct scar stricture and 6 cases of normal CBD tissues from liver transplantation donor were collected as control. The expressions of PTGFR and COX-2 were detected by immunohistochemical strept-avidin-biotin complex (SABC) method. Semiquantitative RT-PCR and ELISA methods were used to detect the mRNA and protein levels of PTGFR in bile duct fibroblasts which were effected by TGF-β1 with different concentrations (0, 10, 20, and 30 ng/ml) for 24 h. ResultsThe positive rates of PTGFR and COX-2 were 88.9% (16/18) and 83.3% (15/18) in tissues of benigh CBD scar and 33.3% (2/6) and 0 (0/6) in normal CBD tissues (Plt;0.05). The expressions of the PTGFR mRNA and protein levels became upregulated when the concentrations of the TGF-β1 became higher in human bile duct fibroblasts (Plt;0.05). And the effect was concentration dependant to some extent. ConclusionsThe high expressions of PTGFR and COX-2 play important roles in the process of benign bile duct stricture formation. TGF-β1 is able to induce higher expressions of PTGFR mRNA level and the PTGFR protein level in a concentration dependent manner, and regulate the formation of benign bile duct stricture.
Objective To investigate the effect of imatinib mesylate on radiation-induced lung injury mice and its influence on the oxidative stress and transforming growth factor-β1 (TGF-β1) expression in mice. Methods Forty-five C57BL/6 mice were divided into a treatment group, a control group and a model group. The treatment group and model group were given radiation of 18 Gy delivered in the thorax. After 4 h daily of the radiation, the treatment group received imatinib mesylate of 0.081 g/kg, while the other groups were given normal saline solution. The experiments were continued for 30 days. After the experiments, the lungs of mice were divided into 4 parts. The haematoxylin and eosin and immunohistochemical stain were prepared to observe the situation of pathology and TGF-β1. The lung homogenate was prepared and the levels of superoxide dismutase (SOD), malondialdehyde (MDA), total antioxidant capacity (T-Aoc) and glutathione peroxidase (GSH-PX) were detected. Results The levels of GSH-PX, T-Aoc and SOD were (173.15±12.21) U, (119.33±11.06) U/mgprot and (1.73±0.33) nmol/mgprot in the treatment group, significantly higher than the control group, while the levels of MDA was (0.68±0.08) nmol/mgprot, significantly lower than the control group (P<0.05). The HE and immunohistochemical stain showed that there were mild alveolar inflammatory changes in the treatment group while such changes were serious in the model group. The scores of HE and immunohistochemical were 1.26±0.12 and 0.31±0.12 in the treatment group, significantly lower than those in the control group (P<0.05). Conclusion The imatinib mesylate can effectively ameliorate the oxidative stress and inhibite TGF-β1 expression in radiation-induced lung injury mice.
OBJECTIVE: To investigate the mechanism of overhealing alleviation by salvia miltiorrhiza (SM) in wound healing. METHODS: Fibroblasts were cultured in vitro, and SM was applied with different concentrations (40, 80, 160 and 320 micrograms/ml) and time(the 1st, 2nd, 3rd, 4th and 5th days) to influence their autocrine. The levels of transforming growth factor-β1 (TGF-β1) and epidermal growth factor (EGF) were determined by ELIAS and radioimmunoassay respectively. RESULTS: The SM could inhibit autocrine of TGF-β1 by fibroblasts (P lt; 0.05). However, it did not affect autocrine of EGF (P gt; 0.05). CONCLUSION: The above results indicate that SM reduces overhealing by inhibiting the autocrine of TGF-β1 selectively.