west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "软骨细胞" 83 results
  • NEOCARTILAGE OF PREDETERMINED SHAPES

    OBJECTIVE: To study chondrogenesis of calcium alginate-chondrocytes predetermined shapes. METHODS: Chondrocytes isolated from ears of rabbit by type II collagenase digestion, and then were mixed with 1.5% solidium alginate solution. The suspension was gelled to create three spatial shapes as triangle, circle and quadrilateral by immersed into 2.5% CaCl2 for 90 minutes, and then was implanted into the subcutaneous pocket on the dorsum of the rabbit. Samples were harvested at 6 and 12 weeks after implantation. RESULTS: Gross examination of excised specimens at 6 and 12 weeks after implantation revealed the presence of new cartilage of approximately the same dimensions as the original construct. Histologic evaluation using hematoxylin and eosin stains confirmed the presence of cartilage nodules at 6 weeks after implantation. After 12 weeks, mature cartilage was observed and histologic analysis confirmed the presence of well formed cartilaginous matrix. CONCLUSION: Predetermined shapes neocartilage can be regenerated using calcium alginate as a carrier of chondrocytes in the bodies of immune animals.

    Release date:2016-09-01 10:21 Export PDF Favorites Scan
  • APOPTOSIS OF FETUS CHONDROCYTES CULTURED IN VITRO AND EXPRESSION OF CASPASE-3

    OBJECTIVE: To investigate apoptosis of chondrocytes cultured in vitro and related expression of caspase-3. METHODS: Apoptosis of chondrocytes were detected by flow cytometry analysis and TUNEL staining. The expression of caspase-3 was determined by RT-PCR and Western blot, and caspase-3 protein activity was determined by ELISA. RESULTS: Apoptosis was observed in chondrocytes cultured in vitro from passage 1 to passage 4 at various degrees. The percentage of apoptosis of chondrocytes on day 7 was much higher than that on day 3 (15.7% +/- 0.3% vs 8.9% +/- 0.6%, P lt; 0.01). caspase-3 mRNA and protein expressed in chondrocytes during whole culture process. Along with the culture time extension in vitro, caspase-3 expression and protein activity up-regulated, coincident with apoptosis of chondrocyte. caspase-3 was activated and a fragment of 20 kDa was detected after 7 days of culture. CONCLUSION: caspase-3 is involved in apoptosis of chondrocytes cultured in vitro.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • IMMUNOLOGICAL INVESTIGATION OF REPAIR OF ARTICULAR CARTILAGE DEFECTS WITH ALLOGENEIC CHONDROCYTES IN PORCINS

    Objective To evaluate the immunological reaction and the outcome of allogeneic chondrocyte transplantation in repairing articular cartilage defects in porcins. Methods Full articular cartilage from the knee of two Shanghai white porcins about one-month-old was removed and cut mechanically, digested by 0.25% trypsin and 0.2% type Ⅱ collagenase and cultured in 10% DMEM medium. Defects of 0.5 cm×0.5 cm involving the subchodral bone were created in both the left and right femur condyloid in 8 two-month-old Yunnai bama porcins. Allogeneic chondrocyte transplantation were implanted in defects at a density of (1.0-2.0)×106,0.2 ml. The lymphocytes from the receivers’ blood were collected before transplantation and after 3, 5, 7 and 12 weeks of transplantation, then mixed with allogeneic chondrocytes to determin the lymphocyte stimulation index(SI) in vitro. The histological observation in vivo was made after 5, 7 and 24 weeks of transplantation. Results Lymphocyte SI at 3, 5, 7 and 12 weeks(1.457±0.062,1.739±0.142,1.548±0.047,1.216±0.028) after transplantation was higher than that before transplantation(1.102±0.034,Plt;0.05). SI began to increase in the 3rd week and reached the peak value in the 5th week, then gradually declined at the 7th and 12th weeks, showing significant differences when compared with in the 5th week (Plt;0.05). Inflammation and lymphocytes infiltration could be seen in subchondral bone and the intergration area between repair tissue and normal cartilage in the 5th week, and then decreased and limited in subchondral bone in the 7th week. Defects were filled with cartilage tissue, which had good intergration with subchondral bone at 24 weeks after transplantation. Conclusion Immunological reactions can be found at early stage of allogeneic chondrocyte transplantation and then decreased with the time, the fullthickness articular cartilage defects could be repaired mainlywith hyaline cartilage by the allogeneic chondrocyte transplantation. This may provide a new method to repair articular cartilage defects clinically.

    Release date:2016-09-01 09:20 Export PDF Favorites Scan
  • PRO-APOPTOTIC EFFECT OF RETINOIC ACID ON CHONDROCYTE THROUGH REGULATION ON GENE EXPRESSIONOF IGF-2

    【Abstract】 Objective To investigate the effect of retinoic acid (RA) on cell apoptosis and gene regulation of IGF-2in chondrocyte. Methods One 1-month-old Chinese rabbit weighted 500 g was used in this experiment. The chondrocyte from rabbit knee were cultured by enzyme digestion. Twenty-five μL all-trans-retinoic acid (ATRA) (1×10-6 mol/L) were added in the media of cultured chondrocyte for 24 hours as experimental group, while 25 μL DMEM were added as control group. The secretion of collagen Ⅱ was observed by immunohistochemistry method, cell apoptosis was detected by flow cytometry, IGF-2 mRNA and protein expression in chondrocyte were detected by RT-PCR and Western blot analysis. Results The expression of collagen Ⅱ was down-regulated by ATRA in the experimental group. The cell apoptosis in chondrocyte exposed to ATRA at 1 ×10-6 mol/L was 21% ± 2%, which increased 5 times compared with the control group(5% ± 1%). The IGF-2 mRNA and protein level in the experimental group were decreased 75% and 57%, respectively, compared to the control group. There weresignificant difference between the experimental group and control group in each index (P lt; 0.05). Conclusion RA may down-regulate the secretion and cell prol iferation, but up-regulate the cell apoptosis in chondrocyte. The apoptotic effect may carry out through inhibiting the IGF-2 expression of chondrocyte.

    Release date:2016-09-01 09:09 Export PDF Favorites Scan
  • Fabrication of poly (lactic-co-glycolic acid)/decellularized articular cartilage extracellular matrix scaffold by three-dimensional printing technology and investigating its physicochemical properties

    Objective To manufacture a poly (lactic-co-glycolic acid) (PLGA) scaffold by low temperature deposition three-dimensional (3D) printing technology, prepare a PLGA/decellularized articular cartilage extracellular matrix (DACECM) cartilage tissue engineered scaffold by combining DACECM, and further investigate its physicochemical properties. Methods PLGA scaffolds were prepared by low temperature deposition 3D printing technology, and DACECM suspensions was prepared by modified physical and chemical decellularization methods. DACECM oriented scaffolds were prepared by using freeze-drying and physicochemical cross-linking techniques. PLGA/DACECM oriented scaffolds were prepared by combining DACECM slurry with PLGA scaffolds. The macroscopic and microscopic structures of the three kinds of scaffolds were observed by general observation and scanning electron microscope. The chemical composition of DACECM oriented scaffold was analyzed by histological and immunohistochemical stainings. The compression modulus of the three kinds of scaffolds were measured by biomechanical test. Three kinds of scaffolds were embedded subcutaneously in Sprague Dawley rats, and HE staining was used to observe immune response. The chondrocytes of New Zealand white rabbits were isolated and cultured, and the three kinds of cell-scaffold complexes were prepared. The growth adhesion of the cells on the scaffolds was observed by scanning electron microscope. Three kinds of scaffold extracts were cultured with L-929 cells, the cells were cultured in DMEM culture medium as control group, and cell counting kit 8 (CCK-8) was used to detect cell proliferation. Results General observation and scanning electron microscope showed that the PLGA scaffold had a smooth surface and large pores; the surface of the DACECM oriented scaffold was rough, which was a 3D structure with loose pores and interconnected; and the PLGA/DACECM oriented scaffold had a rough surface, and the large hole and the small hole were connected to each other to construct a vertical 3D structure. Histological and immunohistochemical qualitative analysis demonstrated that DACECM was completely decellularized, retaining the glycosaminoglycans and collagen typeⅡ. Biomechanical examination showed that the compression modulus of DACECM oriented scaffold was significantly lower than those of the other two scaffolds (P<0.05). There was no significant difference between PLGA scaffold and PLGA/DACECM oriented scaffold (P>0.05). Subcutaneously embedded HE staining of the three scaffolds showed that the immunological rejections of DACECM and PLGA/DACECM oriented scaffolds were significantly weaker than that of the PLGA scaffold. Scanning electron microscope observation of the cell-scaffold complex showed that chondrocytes did not obviously adhere to PLGA scaffold, and a large number of chondrocytes adhered and grew on PLGA/DACECM oriented scaffold and DACECM oriented scaffold. CCK-8 assay showed that with the extension of culture time, the number of cells cultured in the three kinds of scaffold extracts and the control group increased. There was no significant difference in the absorbance (A) value between the groups at each time point (P>0.05). Conclusion The PLGA/DACECM oriented scaffolds have no cytotoxicity, have excellent physicochemical properties, and may become a promising scaffold material of tissue engineered cartilage.

    Release date:2019-07-23 09:50 Export PDF Favorites Scan
  • COMPARATIVE STUDY ON THE MAIN BIOLOGICAL CHARACTERISTICS OF MARROW-DERIVED STROMAL CELLS AND CHONDROCYTES IN VITRO CULTURE IN RABBITS

    Objective To observe the main biological characteristics and chondrogenesis potency of bone marrow -derived stromal cells(MSCs) after cytokinesinduction or gene modification in vitro. Methods MSCs from an adult New Zealand white rabbit were isolated and cultivated, and then MSCs were divided into the common medium group(Group A, 15%FBS in DMEM), the induced group by cytokines (Group B), the transfected group(Group C)with adenovirus-hepatocyte growth factor transgene (adHGF). The medium of group B consisted of transforming growth factor-β1(TGF-β1,10 ng/ml), basic fibroblast growth factor(bFGF,25 ng/ml) addexamethasone (DEX,10-7mol/L) with 15%FBS in DMEM. Cartilage slices wereobtained from femoral condyles and patellar grove in the same rabbit. The minced cartilage was digested in Ⅱ collagenase (3 mg/ml) to obtain chondrocytes(Group D). The change of cell appearance, proliferation capacity, glycosaminoglycans(GAG), immunohistochemical staining for type Ⅰ, Ⅱ collagen were observed during the 5th passage MSCs and MSCs after induction or gene modification. Expression of mRNA for type Ⅰ and Ⅱ collagen was detected by RT-PCR. Results Primary MSCs proliferated as shortspindle shape, while the 5th MSCs showed longspindle shape. Positive stain of type Ⅰ collagen could be found in groups A, B and C, while positivestain of type Ⅱ collagen was shown in groups B and D. The content of GAG in group B was higher than that in group A, but there was no significant difference between them(Pgt;0.05), and there was significant difference between groups A and D(Plt;0.05). No significant difference was noted in groups A,B and C on proliferation by MTT(Pgt;0.05),except that of at the fourth day after transfection between groups A and C(Plt;0.05). RT-PCR demonstrated that MSCs always had higher levelsof mRNA type Ⅰ collagen in groups A, B and C. The expression of mRNA type Ⅱ collagen was identified in groups B and D, and only low levels of mRNA type Ⅱ collagen in group C. Conclusion The above results indicate MSCs have a natural tendency of osteogenic differentiation in vitro culture, and also demonstrate the chondrogenic potency with the technique of cytokines induction or gene modification after passage. MSCs can be transfected efficiently being seed cells in tissue engineered bone or cartilage to accept target genes such as adHGF, and have a higher levels of expression in vitro, which lasted 4 weeks at least.

    Release date: Export PDF Favorites Scan
  • Research progress of different cell seeding densities and cell ratios in cartilage tissue engineering

    ObjectiveTo review the research progress of different cell seeding densities and cell ratios in cartilage tissue engineering. MethodsThe literature about tissue engineered cartilage constructed with three-dimensional scaffold was extensively reviewed, and the seeding densities and ratios of most commonly used seed cells were summarized. ResultsArticular chondrocytes (ACHs) and bone marrow mesenchymal stem cells (BMSCs) are the most commonly used seed cells, and they can induce hyaline cartilage formation in vitro and in vivo. Cell seeding density and cell ratio both play important roles in cartilage formation. Tissue engineered cartilage with good quality can be produced when the cell seeding density of ACHs or BMSCs reaches or exceeds that in normal articular cartilage. Under the same culture conditions, the ability of pure BMSCs to build hyaline cartilage is weeker than that of pure ACHs or co-culture of both. ConclusionDue to the effect of scaffold materials, growth factors, and cell passages, optimal cell seeding density and cell ratio need further study.

    Release date:2022-05-07 02:02 Export PDF Favorites Scan
  • THE EXPERIMENTAL STUDY ON OPTIMAL CELL DENSITY AND FORMATION TIME OF TISSUE ENGINEERED AUTOLOGOUS CARTILAGE

    OBJECTIVE This paper aims to investigate the suitable cell density and the best formation time of tissue engineered autologous cartilage and to provide theoretical basis and parameters for clinical application. METHODS The chondrocytes isolated from mini swines’ ears were mixed with injectable biocompatible matrix (Pluronic), and the density of cell suspensions were 10, 20, 30, 40, 50, 60, 70 x 10(4)/ml. The chondrocyte-polymer constructs were subcutaneously injected into the abdomen of autologous swine. The specimens were observed grossly and histologically after 6 weeks, and investigated the suitable cell density. Then the chondrocyte-polymer constructs with suitable cell density were transplanted into the abdomen of autologous swine and evaluated grossly and histologically in 1, 3, 6, 9, 15 weeks after transplantation to investigate the best formation time of tissue engineered cartilage. RESULTS The experiments demonstrated that the tissue engineered autologous cartilage was similar to the natural cartilage on animals with normal immune system in histological characteristics. The optimal chondrocyte density is 50 x 10(6)/ml, and the proper harvest time is the sixth week. CONCLUSION With tissue engineering skills, we have identified the optimal chondrocyte density and the proper harvest time.

    Release date:2016-09-01 11:05 Export PDF Favorites Scan
  • REPAIR OF THYROID CARTILAGE DEFECTS WITH CHONDROCYTE-ALLOGENOUS ACELLULAR CARTILAGINOUS MATRIX COMPOSITE IN RABBITS

    Objective To investigate the feasibility of repairing thyroid cartilage defects by implantation of chondrocyte-allogenous acellular cartilaginousmatrix(chondrocyte-ACM) composite in rabbits. Methods The thyroid chondrocyteswere isolated and co-cultured in vitro with allogenous acellular cartilaginousmatrix(ACM) to form the chondrocyte-ACM composite. The composite was analyzed histologically and was used to repair defects of thyroid cartilage. Eighteen New Zealand adult rabbits were made the defect models of thyroid cartilage at the two sides and divided into three groups. The defects were repaired with chondrocyte-ACM composite in the experimental group(n=6), with simple ACM in the ACM group (n=6)and without any material in the control group(n=6). The animals were sacrificed at 8 weeks after operation. The specimens were evaluated histologically. Results In vitro, the growth of chondrocytes was observed on the surface of allogenous acellular cartilaginous matrix and no chondrocytes grew inside the matrix. The defect filled with muscle and connective tissues in control group; the lymphocyte infiltration was observed in the matrix and no new cartilage formationoccurred at 8 weeks after operation in simple ACM group and experimental group.So the defect repair of rabbits thyroid cartilage failed. Conclusion The allogenous acellular cartilaginous matrixfailed to serve as a scaffold for chondrocytes both in vitro and in vivo. The allogenous acellular cartilaginous matrixshould be improved.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • Expression and significance of hypoxia-inducible factor 1α in endplate chondrocytes of rats

    Objective To explore the expression and significance of hypoxia-inducible factor 1α (HIF-1α) in endplate chondrocytes, and to study the relations between HIF-1α expression and endplate chondrocytes apoptosis. Methods Eight Sprague Dawley rats were selected to obtain the L1-5 intervertebral disc endplate; the endplate chondrocytes were isolated by enzyme digestion method, and the endplate chondrocytes at passage 3 were cultured under 20% O2 condition (group A), and under 0.5% O2 condition (group B). Cell morphology was observed by inverted phase contrast microscope and cell apoptosis was detected using flow cytometry after cultured for 24 hours; the mRNA expression of HIF-1α was detected by real-time fluorescent quantitative PCR, the protein expressions of HIF-1α, Bax, and Bcl-2 by Western blot. Gene clone technology to design and synthesize two siRNAs based on the sequence of HIF-1α mRNA. HIF-1α specific RNAi sequence compound was constructed and transfected into cells. The transfected endplate chondrocytes at passage 3 were cultured under 0.5% O2 condition in group C and group D (HIF-1α gene was silenced). After cultured for 24 hours, cells were observed via immunofluorescence staining of HIF-1α, and cell apoptosis was detected using flow cytometry. Meanwhile, the mRNA expressions of HIF-1α, collagen type II (COL II), Aggrecan, and SOX9 were detected by real-time fluorescent quantitative PCR, and the protein expressions of HIF-1α, Bax, and Bcl-2 by Western blot. Results At 24 hours after culture, small amount of vacuoles necrotic cells could be observed in group A and group B; there was no significant difference in apoptosis rate between groups A and B (t=1.026,P=0.471), and HIF-1α mRNA and protein expressions in group B were significantly higher than those in group A (t=22.672,P=0.015;t=18.396,P=0.013), but, there was no significant difference in protein expressions of Bax and Bcl-2 between groups A and B (t=0.594,P=0.781;t=1.251,P=0.342). The number of vacuolar necrosis cells in group D was significantly higher than that in group C, and HIF-1α positive cells were observed in group D. The apoptosis rate of group D was significantly higher than that of group C (t=27.143,P=0.002). The mRNA expressions of HIF-1α, COL II, Aggrecan, and SOX9 in group D were significantly lower than those in group C (t=21.097,P=0.015;t=34.829,P=0.002;t=18.673,P=0.022;t=31.949,P=0.007). The protein expressions of HIF-1α and Bcl-2 in group D were significantly lower than those in group C (t=37.648,P=0.006;t=16.729,P=0.036), but the protein expression of Bax in group D was significantly higher than that in group C (t=25.583,P=0.011). Conclusion HIF-1α mRNA expression is up-regulated under hypoxia condition, which will increase the hypoxia tolerance of endplate chondrocytes. Cell apoptosis is suppressed by the activation of HIF-1α in endplate chondrocytes under hypoxia condition.

    Release date:2017-04-01 08:56 Export PDF Favorites Scan
9 pages Previous 1 2 3 ... 9 Next

Format

Content