Antimicrobial stewardship (AMS) is an important means to control bacterial resistance. The unique situation of intensive care unit (ICU) poses a challenge to AMS. This article reviews the literature on AMS in the ICU at home and abroad in recent years, and summarizes the related measures of AMS. Effective AMS measures in the ICU include setting up a multidisciplinary AMS team, using rapid microbial diagnosis technology to shorten the time of diagnosis, using non-culture methods to assess the necessity of antimicrobial therapy for patients with suspected sepsis, and evaluating the effectiveness of antimicrobial therapy as early as possible and optimizing it. These initiatives aim to increase the rational use of antimicrobials in ICU, reduce the risk of multidrug-resistant infections, and improve patients’ condition.
Medical device-related pressure injury (MDRPI) is a kind of pressure injury that occurs in the course of diagnosis and treatment, and its appearance is similar to that of medical device. Neonatal intensive care unit (NICU) infants are more likely to develop MDRPI than children and adults because of the physiological characteristics of skin and the influence of disease. At present, the occurrence of MDRPI in NICU infants is attracting worldwide attention. Its treatment and nursing consume a large amount of medical resources, which not only affect the outcome of the disease, but also increase the economic burden of the family and society. This article summarizes the MDRPI from three aspects: summary, influencing factors, and evaluation tools. It is expected that NICU nurses will carry out large sample clinical investigation of MDRPI in the future, so as to provide a reference for risk prediction model and risk assessment tools to identify high-risk infants and take effective measures in advance to reduce the incidence of MDRPI.
Objective To explore the effect of “net bottom” management in the control of device-associated infections (DAIs) in elderly patients by setting infection monitoring doctors and nurses in the emergency intensive care unit (EICU). Methods Elderly patients who aged≥60 years old admitted to the EICU of the First People’s Hospital of Lianyungang between April 2018 and March 2021 were selected as the research subjects. A “net bottom” management mode was established and implemented for the purpose of infection prevention and control, taking medical and other departments as the coordination and management subjects, and infection monitoring doctors and nurses as the core. The effectiveness of the management intervention was evaluated by comparing the incidences of DAIs in elderly patients, the compliance rates of medical staff in hand hygiene, and the consumption of hand sanitizer per bed day in EICU among the primary stage (from April 2018 to March 2019), intermediate stage (from April 2019 to March 2020), and later stage (from April 2020 to March 2021). Results During the primary stage, intermediate stage, and later stage, there were 540, 497, and 507 elderly inpatients in EICU monitored, respectively, and the incidences of nosocomial infections were 7.22% (39/540), 5.84% (29/497), and 4.14% (21/507), respectively, showing a decreasing trend (χ2trend=4.557, P=0.033). The incidences of ventilator-associated pneumonia, central line-associated bloodstream infections, and catheter-associated urinary tract infections decreased from 4.82‰, 2.53‰, and 0.95‰, respectively in the primary stage, to 0.51‰, 1.01‰, and 0.53‰, respectively in the later stage, among which the difference in the incidence of ventilator-associated pneumonia was statistically significant (P<0.05). The hand hygiene compliance rate of EICU medical staff increased from 70.39% to 86.67% (P<0.05), and the consumption of hand sanitizer per bed day increased from 33.70 mL to 67.27 mL. The quarterly hand hygiene compliance rate was positively correlated with the quarterly consumption of hand sanitizer per bed day (rs=0.846, P=0.001), and negatively correlated with the quarterly incidence of nosocomial infections (rs=–0.769, P=0.003). Conclusion The “net bottom” management by setting up infection monitoring doctors and nurses in the EICU and multi-department collaboration can reduce the incidence of DAIs in elderly patients in EICU, which plays a positive role in promoting the hospital infection management and improving the quality of hospital infection management.
ObjectiveTo analyze the influencing factors of ventilator-associated pneumonia (VAP) in comprehensive intensive care units (ICUs) in a certain district of Shanghai, and to provide evidence for developing targeted measures to prevent and reduce the occurrence of VAP.MethodsThe target surveillance data of 1 567 inpatients with mechanical ventilation over 48 hours in comprehensive ICUs of 5 hospitals in the district from January 2015 to December 2017 were retrospectively analyzed to determine whether VAP occurred. The data were analyzed with SPSS 21.0 software to describe the occurrence of VAP in patients and to screen the influencing factors of VAP.ResultsThere were 133 cases of VAP in the 1 567 patients, with the incidence of 8.49% and the daily incidence of 6.01‰; the incidence of VAP decreased year by year from 2015 to 2017 (χ2trend=11.111, P=0.001). The mortality rate was 12.78% in VAP patients while was 7.25% in non-VAP patients; the difference was significant (χ2=5.223, P=0.022). A total of 203 pathogenic bacteria were detected in patients with VAP, mainly Gram-negative bacteria (153 strains, accounting for 75.37%). The most common pathogen was Pseudomonas aeruginosa. The single factor analysis showed that gender, age, Acute Physiology and Chronic Health Evaluation (APACHE) Ⅱ score, the length of ICU stay, and the length of mechanical ventilation were the influencing factors of VAP (χ2=9.572, 5.237, 34.759, 48.558, 44.960, P<0.05). Multiple logistic regression analysis found that women [odds ratio (OR)=1.608, 95% confidence interval (CI) (1.104, 2.340), P=0.013], APACHE Ⅱ score >15 [OR=4.704, 95%CI (2.655, 8.335), P<0.001], the length of ICU stay >14 days [OR=2.012, 95%CI (1.188, 3.407), P=0.009], and the length of mechanical ventilation >7 days [OR=2.646, 95%CI (1.439, 4.863), P=0.002] were independent risk factors of VAP.ConclusionsNosocomial infection caused by mechanical ventilation in this area has a downward trend, and the mortality rate of patients with VAP is higher. For the patients treated with mechanical ventilation in ICU, we should actively treat the primary disease, shorten the length of ICU stay and the length of mechanical ventilation, and strictly control the indication of withdrawal, thereby reduce the occurrence of VAP.
Objective To evaluate and summarize the relevant evidence of oxygenation strategies with tracheal intubation after extubation for adult in intensive care unit (ICU), and to provide evidence-based practice for the development of scientific and effective strategies tracheal intubation after extubation for ICU adult patients. Methods Evidence-based databases, related guideline websites, association websites and original databases were searched by computer for literature about oxygenation strategies with tracheal intubation after extubation for ICU adults patients was extracted. The retrieval time was from the establishment of the databases to May 2023. Two researchers trained in evidence-based practice evaluated the quality of the included literature and extracted evidence from the literature that met the quality evaluation criteria. Results A total of 18 articles were included, including 7 guidelines, 4 clinical decisions, 2 expert consensus, 4 systematic reviews and 1 randomized controlled trial. A total of 22 pieces of best evidence were formed, including 7 aspects of basic principles, evaluation, selection, parameter setting, withdrawal, effect evaluation and precautions. ConclusionThe medical staff should select the best evidence based on the actual clinical situation and the patient’s own needs, and adjust the oxygenation strategies to reduce the rate of tracheal intubation and improve the prognosis of patients.
ObjectiveTo explore the safety of ventilator support in hyperbaric oxygen chamber and the prevention of related complications.MethodsFrom July 2016 to December 2018, there were 127 intensive care unit patients underwent hyperbaric oxygen therapy with ventilator. Medical professionals in hyperbaric medicine or intensive care medicine were arranged to accompany the patients in the treatment process, to observe the patients’ condition changes closely, monitor their heart rate, respiration, blood pressure, and oxygen saturation, and perform sputum suction at any time if needed and monitor the airway peak pressure change to prevent pneumothorax.ResultsDuring the process of hyperbaric oxygen therapy, 13 patients (10.24%) were treated with analgesia/sedation for patient-ventilator asynchrony, 4 patients (3.15%) exited the champer emergently for acute left heart failure, 3 patients (2.36%) had epileptic seizures, 3 patients (2.36%) had aspiration, and 1 patient (0.79%) had breath and cardiac arrest. After emergency treatment, all the patients returned to the ward safely.ConclusionDuring the treatment of hyperbaric oxygen therapy for intensive care unit patients with ventilator, the accompany of qualified professionals in hyperbaric medicine or intensive care medicine in the hyperbaric oxygen chamber can treat the patients’ symptoms timely and reduce the risk greatly.
ObjectiveTo explore the psychological pressure in Intensive Care Unit (ICU) nurses and the sources of their pressure. MethodWe investigated the ICU nurses in West China Hospital with a self-designed psychological pressure questionnaire from March to September 2013. ResultsThe total stress level of ICU nurses was 2.89±0.86. The top five sources were low salaries and welfare benefits (3.37±0.61), high frequency of night work (3.31±0.88), wide need of knowledge (3.22±0.41), heavy workload (3.20±0.80) and chronic fatigue syndrome (3.19±0.75). ConclusionsGreat psychological pressure exists in ICU nurses. We urgently need effective approaches to relieve the stress of ICU nurses in order to improve the efficiency and quality of nursing service.
ObjectiveTo identify the risk factors of Intensive Care Unit (ICU) nosocomial infection in ICU ward in a first-class hospital in Wuxi, and discuss the effective control measures, in order to provide evidence for making strategies in preventing and controlling nosocomial infection. MethodsAccording to the principle of random sampling and with the use of case-control study, a sample of 100 nosocomial infection patients were selected randomly from January 2012 to December 2014 as survey group, and another 100 patients without nosocomial infection as control group. The data were input using EpiData 2.0, and SPSS 13.0 was used for statistical analysis; t-test and χ2 test were conducted, and the risk factors were analyzed using multi-variate logistic regression model. The significant level of P-value was 0.05. ResultsBased on the results of univariate analysis, there were 13 risk factors for ICU nosocomial infection, including diabetes mellitus, hypoproteinemia, being bedridden, surgical operation, immunosuppression, glucocorticoids, organ transplantation, tracheal intubation, length of hospitalization, length of mechanical ventilation, length of central venous catheter, length of urinary catheter, and length of nasogastric tube indwelling. Multi-variate logistic analysis indicated that hospitalization of 7 days or longer[OR=1.106, 95%CI (1.025, 1.096), P=0.001], diabetes mellitus[OR=2.770, 95%CI (1.068, 7.186), P=0.036], surgical operation[OR=7.524, 95%CI (2.352, 24.063), P=0.001], mechanical ventilation of 7 days or longer[OR=1.222, 95%CI (1.116, 1.339), P<0.001], and nasogastric tube indwelling of 7 days or longer[OR=1.110, 95%CI (1.035, 1.190), P=0.003] were considered as independent risk factors for ICU nosocomial infection. ConclusionHospitalization of 7 days or longer, diabetes mellitus, surgical operation, tracheal intubation of 7 days or longer, and gastric intubation of 7 days or longer are the major risk factors for nosocomial infection in ICU ward. Advanced intervention and comprehensive prevention measures are helpful to reduce the nosocomial infection rate and ensure the safety of medical treatment.