Antimicrobial stewardship (AMS) is an important means to control bacterial resistance. The unique situation of intensive care unit (ICU) poses a challenge to AMS. This article reviews the literature on AMS in the ICU at home and abroad in recent years, and summarizes the related measures of AMS. Effective AMS measures in the ICU include setting up a multidisciplinary AMS team, using rapid microbial diagnosis technology to shorten the time of diagnosis, using non-culture methods to assess the necessity of antimicrobial therapy for patients with suspected sepsis, and evaluating the effectiveness of antimicrobial therapy as early as possible and optimizing it. These initiatives aim to increase the rational use of antimicrobials in ICU, reduce the risk of multidrug-resistant infections, and improve patients’ condition.
Objective To investigate the correlation between monocyte-lymphocyte ratio (MLR) and intensive care unit (ICU) results in ICU hospitalized patients. Methods Clinical data were extracted from Medical Information Mart for Intensive Care Ⅲ database, which contained health data of more than 50000 patients. The main result was 30-day mortality, and the secondary result was 90-day mortality. The Cox proportional hazards model was used to reveal the association between MLR and ICU results. Multivariable analyses were used to control for confounders. Results A total of 7295 ICU patients were included. For the 30-day mortality, the hazard ratio (HR) and 95% confidence interval (CI) of the second (0.23≤MLR<0.47) and the third (MLR≥0.47) groups were 1.28 (1.01, 1.61) and 2.70 (2.20, 3.31), respectively, compared to the first group (MLR<0.23). The HR and 95%CI of the third group were still significant after being adjusted by the two different models [2.26 (1.84, 2.77), adjusted by model 1; 2.05 (1.67, 2.52), adjusted by model 2]. A similar trend was observed in the 90-day mortality. Patients with a history of coronary and stroke of the third group had a significant higher 30-day mortality risk [HR and 95%CI were 3.28 (1.99, 5.40) and 3.20 (1.56, 6.56), respectively]. Conclusion MLR is a promising clinical biomarker, which has certain predictive value for the 30-day and 90-day mortality of patients in ICU.
Peritoneal dialysis (PD) is widely used to treat acute kidney injury (AKI) in low-resource and higher income countries. This paper summarizes the key points and improvements of the 2020 International Society for Peritoneal Dialysis guidelines in five aspects of outcomes for AKI treatment, peritoneal access, dialysis solutions, prescription of dialysis with targets of solute clearance and complications, so as to provide references for AKI in clinical practice.
ObjectiveTo evaluate the diagnostic value of various severity assessment scoring systems for sepsis after cardiac surgery and the predictive value for long-term prognosis.MethodsThe clinical data of patients who underwent cardiac sugeries including coronary artery bypass grafting (CABG) and (or) valve reconstruction/valve replacement were extracted from Medical Information Mark for Intensive Care-Ⅲ (MIMIC-Ⅲ). A total of 6 638 patients were enrolled in this study, including 4 558 males and 2 080 females, with an average age of 67.0±12.2 years. Discriminatory power was determined by comparing the area under the receiver operating characteristic (ROC) curve (AUC) for each scoring system individually using the method of DeLong. An X-tile analysis was used to determine the optimal cut-off point for each scoring system, and the patients were grouped by the cut-off point, and Kaplan-Meier curves and log-rank test were applied to analyze their long-term survival.ResultsCompared with the sequential organ failure assessment (SOFA) score, acute physiology score-Ⅲ (APS-Ⅲ, P<0.001), the simplified acute physiology score-Ⅱ (SAPS-Ⅱ, P<0.001) and logistic organ dysfunction score (LODS, P<0.001) were more accurate in distinguishing sepsis. Compared with the non-septic group, the 10-year overall survival rate of the septic group was lower (P<0.001). Except for the systemic inflammation response score (SIRS) system, the 10-year overall survival rates of patients in the high risk layers of SOFA (HR=2.50, 95%CI 2.23-2.80, P<0.001), SAPS (HR=2.93, 95%CI 2.64-3.26, P<0.001), SAPS-Ⅱ (HR=2.77, 95%CI 2.51-3.04, P<0.001), APS-Ⅲ (HR=2.90, 95%CI 2.63-3.20, P<0.001), LODS (HR=2.17, 95%CI 1.97-2.38, P<0.001), modified logistic organ dysfunction score (MLODS, HR=2.04, 95%CI 1.86-2.25, P<0.001) and the Oxford acute severity of illness score (OASIS, HR=2.37, 95%CI 2.16-2.60, P<0.001) systems were lower than those in the low risk layers.ConclusionCompared with SOFA score, APS-Ⅲ score may have higher value in the diagnosis of sepsis in patients who undergo isolated CABG, a valve procedure or a combination of both. Except for SIRS scoring system, SOFA, APS-Ⅲ, SAPS, SAPS-Ⅱ, LODS, MLODS and OASIS scoring systems can be applied to predict the long-term outcome of patients after cardiac surgery.
ObjectiveTo investigate the incidence of nosocomial infection and device-related infection in the Intensive Care Unit (ICU), analyze its related risk factors, and search for effective measures to prevent and control nosocomial infection. MethodsBy prospective objective monitoring method, we surveyed 294 patients hospitalized in the ICU for at least 48 hours between January and December 2012. The doctor in charge filled in relevant information of the patients to complete the questionnaires, and hospital infection management staff was responsible for tracking, judging, and statistical analysis. ResultsIn the 294 patients, 61 had hospital infections, and there were 78 cases. The hospital infection rate was 20.75%, and the case infection rate was 26.53%. The day incidence of patient infection was 16.01‰, and day infection rate was 20.47‰ for infection cases. After average severity of illness score adjustment, the day case infection rate was 7.48%, ventilator associated pneumonia (VAP) infection rate was 27.27‰, central venous catheter associated bloodstream infection rate was 6.58‰, and catheter associated urinary tract infection rate was 3.15‰. ConclusionICU has a high risk of hospital infection. In the device related infections, VAP infection rate is the highest. Continuous improvement can be achieved through monitoring and discovering problems, strengthening hospital infection management training for the medical personnel of the hospital, close communication between doctors and hospital infection management staff, and strict implementation of hospital infection management measures.
With the continuous development of critical care medicine, the survival rate of critical ill patients continues to increase. However, the residual dysfunction will have a far-reaching impact on the burden on patients, families, and health-care systems, and will significantly increase the demand of the follow-up rehabilitation treatment. Critical illness rehabilitation intervenes patients who are still in the intensive care unit (ICU). It can prevent complications, functional deterioration and dysfunction, improve functional activity and quality of life, shorten the time of mechanical ventilation, the length of ICU stay and hospital stay, and also reduce medical expenses. Experts at home and abroad believe that early rehabilitation of critical ill patients is safe and effective. So rehabilitation should be involved in critical ill patients as early as possible. However, the promotion of this model is still limited by the setting of safety parameters, the ICU culture, the lack of critical rehabilitation professionals, and the physiological and mental cognitive status of patients. Rehabilitation treatment in ICU is constantly being practiced at home and abroad.
Objective To compare the bacterial spectrums of respiratory intensive care unit (RICU) patients derived from traditional bacterial culture and loop-mediated isothermal amplification (LAMP) assay. To analyze the relationship between clinical factors and clinical outcome of patients. Methods Data of patients in RICU with lower respiratory tract infection from October 2018 to December 2020 was collected. The bacterial spectrums obtained by traditional culture method and LAMP-based method were compared. Clinical factors were divided into two categories and taken into analysis of variance for assessing their relevance with clinical outcomes. Those with significances in analysis of variance were taken into binary logistic regression. Results A total of 117 patients were included. The ratio of patients with positive bacterial culture results was 39.13% (n=115), and that with positive LAMP assay results was 72.65% (n=117). The ratios of patients with at least two positive results for culture and LAMP were 8.70% (n=115) and 36.75% (n=117), respectively. According to chi-squared test, mechanical ventilation (χ2=5.260, P=0.022), and patients with two or more bacteria positive for LAMP assay (χ2=8.227, P=0.004) were related to higher risk of death. Mechanical ventilation and patients with two bacteria positive for LAMP assay were included in binary logistic regression. The odds ratio for death was 4.789 in patients with two or more bacteria positive by LAMP assay (95% confidence interval 1.198 - 19.144, P=0.027). Conclusions LAMP-based method is helpful in detecting more bacteria from respiratory tract specimens of RICU patients, which will be a contributor to precision medicine. Patients with at least two bacteria positive based on LAMP assay have higher risk of death.
ObjectiveTo analyze the influencing factors of ventilator-associated pneumonia (VAP) in comprehensive intensive care units (ICUs) in a certain district of Shanghai, and to provide evidence for developing targeted measures to prevent and reduce the occurrence of VAP.MethodsThe target surveillance data of 1 567 inpatients with mechanical ventilation over 48 hours in comprehensive ICUs of 5 hospitals in the district from January 2015 to December 2017 were retrospectively analyzed to determine whether VAP occurred. The data were analyzed with SPSS 21.0 software to describe the occurrence of VAP in patients and to screen the influencing factors of VAP.ResultsThere were 133 cases of VAP in the 1 567 patients, with the incidence of 8.49% and the daily incidence of 6.01‰; the incidence of VAP decreased year by year from 2015 to 2017 (χ2trend=11.111, P=0.001). The mortality rate was 12.78% in VAP patients while was 7.25% in non-VAP patients; the difference was significant (χ2=5.223, P=0.022). A total of 203 pathogenic bacteria were detected in patients with VAP, mainly Gram-negative bacteria (153 strains, accounting for 75.37%). The most common pathogen was Pseudomonas aeruginosa. The single factor analysis showed that gender, age, Acute Physiology and Chronic Health Evaluation (APACHE) Ⅱ score, the length of ICU stay, and the length of mechanical ventilation were the influencing factors of VAP (χ2=9.572, 5.237, 34.759, 48.558, 44.960, P<0.05). Multiple logistic regression analysis found that women [odds ratio (OR)=1.608, 95% confidence interval (CI) (1.104, 2.340), P=0.013], APACHE Ⅱ score >15 [OR=4.704, 95%CI (2.655, 8.335), P<0.001], the length of ICU stay >14 days [OR=2.012, 95%CI (1.188, 3.407), P=0.009], and the length of mechanical ventilation >7 days [OR=2.646, 95%CI (1.439, 4.863), P=0.002] were independent risk factors of VAP.ConclusionsNosocomial infection caused by mechanical ventilation in this area has a downward trend, and the mortality rate of patients with VAP is higher. For the patients treated with mechanical ventilation in ICU, we should actively treat the primary disease, shorten the length of ICU stay and the length of mechanical ventilation, and strictly control the indication of withdrawal, thereby reduce the occurrence of VAP.