Objective To explore the effect of age and gene therapyon the differentiation of marrow mesenchymal stem cells (MSCs) of the rats. Methods MSCs from the young (1-month-old), adult (9-month-old), and the aged(24monthold) rats were expanded in culture and infected with adenovirus mediated human bone morphogenetic protein 2 gene (Ad-BMP-2). The expression of BMP-2 and osteoblastic markers such as alkaline phosphatase(ALP), collagen Ⅰ(Col Ⅰ), bone sialoprotein(BSP) and osteopontin(OPN) were assayed during the process of differentiation. Their abilities to induce ectopic bone formation in nude mice were also tested. Results There was no significant difference in the expression of BMP-2 among the 3 groups. ALP activity assay and semi-quantitative reverse transcription polymerase chain reaction(RT-PCR) demonstrated that there were no significant differences in the expression of osteoblastic markers ALP, Col-Ⅰ, OPN and BSP amongthe 3 groups. Histomorphometric analysis indicated that there were no significant differences in the volume of the newly formed ectopic bones in nude mice amongthe 3 groups. Conclusion MSCs obtained from the aged ratscan restore their osteogenic activity following human BMP-2 gene transduction, therefore provides an alternative to treating the aged bone disease.
ObjectiveTo study immunodepression effect of bone marrow-derived mesenchymal stem cell (BMSC) on acute asthmatic airway inflammation by galectin-1 (gal-1) in vivo.MethodsEighty-five female BALB/c mice were equally randomized into normal control group, asthmatic group, BMSC treatment group, gal-1 treatment group and BMSC and gal-1 inhibitor group. Ovalbumin (OVA) was used to establish acute asthmatic model. Total cell number and differential cell analysis in each group in bronchoalveolar lavage fluid (BALF) were determined. Furthermore, hematoxylin-eosin and periodic-acid Schiff staining was used to compare airway inflammation among five groups. Measurement of cytokines, including interleukin (IL) -4, IL-5 and gal-1 in BALF and OVA specific IgE (OVA-IgE) in serum were evaluated by enzyme linked immunosorbent assay. Moreover, dendritic cell (DC) in lung tissue was sorted by immunomagnetic beads and its MAPK signal pathway was analyzed by western blotting among five groups.ResultsAccumulation of inflammation cells, particularly eosinophils around airway and in BALF was evident in asthmatic mouse model, meanwhile hyperplasia of Goblet cell was also obvious in asthmatic group. BMSC engraftment or gal-1 infusion significantly reduced airway inflammation and hyperplasia of Goblet cell and the number of inflammation cells in BALF, especially eosinophils attenuated dramatically. However, there was no effect on airway inflammation and hyperplasia of Goblet Cell by simultaneous infusion BMSC engraftment and gal-1 inhibitor. Compared to normal control group, the level of IL-4, IL-5 in BALF and OVA-IgE in serum was increased remarkably in asthmatic group, but the level of gal-1 reduced obviously. Moreover, infusion of BMSC or gal-1 could mitigate the level of IL-4, IL-5 in BALF and OVA-IgE in serum and increase the level of gal-1 in asthmatic mouse. However, infusion with both BMSC and gal-1 inhibitor exerted no effect on cytokine and OVA-IgE in asthmatic mouse. DC was sorted by immunomagnetic beads and western blotting was used to detect the expression of MAPK signal pathway among five groups. The expression of ERK phosphorylation in asthmatic group was much lower than that in normal control group. On the contrary, the expression of p38 phosphorylation was much higher than that in normal control group. BMSC engraftment or gal-1 infusion significantly activated the ERK pathway and inhibited the p38 MARP pathway on asthmatic mouse DC. Nevertheless, the expression of ERK phosphorylation and p38 phosphorylation for group with BMSC and gal-1 inhibitor infusion was between the level of asthmatic group and normal control group.ConclusionsBMSC infusion alleviates airway inflammation in asthmatic mouse, especially weakens eosinophils infiltration, and the underlying mechanism might be protective effect of gal-1 secreted by BMSC which plays a role in lung tissue DC and regulates the DC expression of MAPK signal pathway.
Objective To explore the effect of the platelet-rich plasma (PRP) on proliferation and osteogenic differentiation of the bone marrow mesenchymal stem cells (MSCs) in China goat in vitro. Methods MSCs from the bone marrow of China goat were cultured. The third passage of MSCs were treated with PRP in the PRP group (the experimental group), but the cells were cultured with only the fetal calf serum (FCS) in the FCS group (the control group). The morphology and proliferation of the cells were observed by an inverted phase contrast microscope. The effect of PRP on proliferation of MSCs was examined by the MTT assay at 2,4,6 and 8 days. Furthermore, MSCs were cultured withdexamethasone(DEX)or PRP; alkaline phosphatase (ALP) and the calcium stainingwere used to evaluate the effect of DEX or PRP on osteogenic differatiation of MSCs at 18 days. The results from the PRP group were compared with those from the FCS group. Results The time for the MSCs confluence in the PRP group was earlier than that in the FCS group when observed under the inverted phase contrast microscope. The MTT assay showed that at 2, 4, 6 and 8 days the mean absorbance values were 0.252±0.026, 0.747±0.042, 1.173±0.067, and 1.242±0.056 in the PRP group, but 0.137±0.019, 0.436±0.052, 0.939±0.036, and 1.105±0.070 in the FCS group. The mean absorbance value was significantly higher in the PRP group than in the FCS group at each observation time (P<0.01). Compared with the FCS group, the positive-ALP cells and the calcium deposition were decreased in the PRP group; however, DEX could increase boththe number of the positiveALP cells and the calcium deposition. Conclusion The PRP can promote proliferation of the MSCs of China goats in vitro but inhibit osteogenic differentiation.
Objective To investigate the myogenic differentiation of mesenchymal stem cells (MSCs) after being transplanted into the local muscle tissues. Methods The serious muscleinjured model was established by the way of radiation injury, incising, and freezing injury in 36 mouses. Purified MSCs derived from bone marrow of male mouse and MSCs induced by5-azacytidine(5-Aza-CR) were transplanted into the local of normal muscle tissues and injured muscle tissues of femal mouse. The quantity of MSCs and the myogenic differentiation of implanted MSCs were detected by the method of double labeling, which included fluorescence in situ DNA hybridization (FISH) and immuno-histochemistry on the 1st, 3rd, 6th, 9th, 12th, and 15th day after transplantation. Results The quantity of implanted MSCs decreased as timepassed. MSCs’ differentiation into myoblasts and positive expression of desmin were observed on the 15th day in purified MSCs group and on the 6th day in induced MSCs groups. Conclusion MSCs could differentiate into myoblasts after being implanted into the local of muscle tissues. The differentiationoccurs earlier in the induced MSCs group than that in purified MSCs group.
Objective To study the vascularization of the compositeof bone morphogenetic protein 2 (BMP-2) gene transfected marrow mesenchymal stem cells (MSCs) and biodegradable scaffolds in repairing bone defect. Methods Adenovirus vector carrying BMP-2 (Ad-BMP-2) gene transfected MSCs and gene modified tissue engineered bone was constructed. The 1.5 cm radial defect models were made on 60 rabbits, which were evenly divided into 4 groups randomly(n=15, 30 sides). Different materials were used in 4 groups: Ad-BMP-2 transfected MSCs plus PLA/PCL (group A), AdLacz transfected MSCs plus PLA/PCL (group B), MSCs plus PLA/PCL (group C) and only PLA/PCL scaffolds (group D). The X-ray, capillary vessel ink infusion, histology, TEM, VEGF expression and microvacular density counting(MVD) were made 4, 8, and 12 weeks after operation. Results In group A after 4 weeks, foliated formed bones image was observed in the transplanted bones, new vessels grew into the bones, the pores of scaffolds were filled with cartilage callus, osteoblasts with active function grew around the microvessels, and VEGF expression and the number of microvessels were significantly superior to those of other groups, showing statistically significant difference (Plt;0.01); after 8 weeks, increasingly more new bones grew in the transplanted bones, microvessels distended and connected with each other, cartilage callus changed into trabecular bones; after 12 weeks, lamellar bone became successive, marrow cavity recanalized, microvessels showed orderly longitudinal arrangement. In groups B and C, the capability of bone formation was weak, the regeneration of blood vessels was slow, after 12 weeks, defects were mostly repaired, microvessels grew among the new trabecular bones. In group D, few new vessels were observed at each time, after 12 weeks, broken ends became hardened, the defectedarea was filled with fibrous tissue. Conclusion BMP-2 gene therapy, by -upregulating VEGF expression, indirectly induces vascularization ofgrafts,promotes the living of seed cells, and thus accelerates new bone formation.
Objective To explore the mechanism of mesenchymal stem cells (MSCs) transplantation for chronic hindlimb ischemia in Lewis rats by using cell tracer technique. Methods MSCs were isolated and cultured by using density gradient centrifugation and adherence method respectively, then labeled by 5-bromo-2-deoxyuridine (BrdU). Eight chronic hindlimb ischemia models of Lewis rats were prepared by using suture-occluded method and then divided randomly to MSCs transplantation group and control group, each group enrolled 4 rats, accepting MSCs transplantation and saline respectively. Then on 7 days and 14 days after transplantation, clinical observation, determination of blood flow, and angiography were performed on rats of the 2 groups. At the same time points after previous tests, rats of the 2 groups were sacrificed to get quadriceps tissues and gastrocnemius tissues to perform HE staining and BrdU immunohis-tochemistry. Results The 8 rats were all survived on 14 days after transplantation, with no tumor happened and necroses in the transplanted area. On 14 days after transplantation, the blood flow ratio of operated side to un-operated side in the hindlimb (1.773 vs. 1.279) of rats in MSCs transplantation group and control group increased, and the angiography results showed that there were no much increase in ratio of collateral vessels number (0.908 vs. 0.835). There were no significant change in the quadriceps tissues and gastrocnemius tissues by HE staining. The BrdU positive kernels located in the inter-stitial substance cells and vascular endothelia cells, and divided differently in different parts of hindlimb at different time points, that the ratio of positive cells in gastrocnemius tissue was higher than those of quadriceps tissue on 7 days after transplantation, but lower on 14 days. Conclusions MSCs transplantation can increases the blood perfusion of hindlimb in the early stage of chronic hindlimb ischemia model, and the possible mechanism may be the paracrine effect of MSCs but not the number increase of collateral vessels.
ObjectiveTo separate peripheral blood mesenchymal stem cells (PBMSC) and peripheral blood endothelial progenitor cells (PBEPC) from peripheral blood, and investigate the biological characteristics of composite cell sheets of PBMSC and PBEPC.MethodsThe peripheral blood of healthy adult New Zealand white rabbits was extracted and PBMSC and PBEPC were separated by density gradient centrifugation. Morphological observation and identification of PBMSC and PBEPC were performed. The 3rd generation of PBMSC and PBEPC were used to construct a composite cell sheet at a ratio of 1∶1, and the 3rd generation of PBMSC was used to construct a single cell sheet as control. The distributions of cells in two kinds of cell sheets were observed by HE staining. In addition, the expression of alkaline phosphatase (ALP), osteocalcin (OCN), and vascular endothelial growth factor (VEGF) in the supernatants of cell sheets were observed by ELISA at 1, 5, and 10 days after osteogenic induction.ResultsThe morphology of PBMSC was spindle-shaped or polygonal, and PBMSC had good abilities of osteogenic and adipogenic differentiation. The morphology of PBEPC was paved stone-like, and the tube-forming test of PBEPC was positive. Two kinds of cell sheets were white translucent. The results of HE staining showed that the composite cell sheet had more cell layers and higher cell density than the single cell sheet. The expressions of ALP, OCN, and VEGF in the supernatant of the two groups of cell sheets increased with the time of induction. The expression of OCN in the group of composite cell sheet was significantly higher than that in the group of single cell sheet on the 5th and 10th day, ALP on the 10th day was significantly higher than that in the group of single cell sheet, VEGF expression on the 1st, 5th, and 10th day was significantly higher than that in the group of single cell sheet, all showing significant differences (P<0.05), and there was no significant difference between the two groups at other time points (P>0.05).ConclusionPBMSC have stable differentiation ability, and they have good application prospects because of their minimally invasive access. Composite cell membranes constructed by co-culture of two kinds of cells and induction of membrane formation provides a new idea and exploration for tissue defect repair.
Objective To investigate the results of human amniotic membrane(HAM) which are loaded with marrow mesenchymal stem cells(MSCs) and epidermis cells in treating fullthickness skin defect combined with radiation injury. Methods Eight minipigs were used in this study. Three round fullthickness wounds(Ф3.67cm), which combined with radiation injury, were created on the dorsum of each side close to the vertebral column in each animal. Among 48 wounds, 24 left side wounds were treated with HAM loaded with MSCs and epidermis cells as experimental group (group A), 16 right side wounds with simple HAM (HAM group, group B) and 8 right side wounds with oil gauze as control (group C). The granulation tissue, reepithelization and wound area were observed after 1,2 and 3 weeks. Immunohistochemistry was performed using vWF as a marker for blood vessels.Image analysis was employed to test new area of wound at different interval time and healing rate of wound.Results The healing time of group A was 6 to 7 days faster than that of group C and 5 to 6 days faster than that of group B. After 15-17 days of graft, there were significant differences in new area of wound and healing rate between group A and groups B,C(Plt;001). New epidermis fully covered whole wound surface in group A, and their granulation tissue, which contained a lot of vWF, fibroblasts, capillaries and collagen, grew well. Many inflammatory cells still were seen in groups B and C, and their contents of vWF, fibroblasts, capillaries and collagen in granulation tissue were smaller than that in group A.Conclusion The graft of HAM loaded with MSCs and epidermis cells played an effective role in promoting healing of wound combined radiation injury with high quality.
Postmenopausal osteoporosis is a type of osteoporosis with high bone transformation rate, caused by a decrease of estrogen in the body, which is a systemic bone disease characterized by decreased bone mass and increased risk of fracture. In recent years, as a kind of non-pharmacologic treatment of osteoporosis, defined by whole-body vibration less than 1 g (g = 9.81 m/s2), low magnitude whole-body vibration is widely concerned, mainly because of its small side effects, simple operation and relative safety. Studies have shown that low magnitude whole-body vibration can improve bone strength, bone volume and bone density. But a lot of research found that, the therapeutic effects of low magnitude whole-body vibration are different depending on ages and hormone levels of subjects for animal models or human patients. There has been no definite vibration therapy can be applied to each subject so far. Studies of whole-body and cellular level suggest that low magnitude whole-body vibration stimulation is likely to be associated with changes of hormone levels and directed differentiation of stem cells. Based on the analysis of related literature in recent years, this paper made a review from vibration parameters, vibration effects and the mechanisms, to provide scientific basis and clinical guidance for the treatment of postmenopausal osteoporosis with low magnitude whole-body vibration.
Bone marrow-derived mesenchymal stem cells (BMSCs) for repairing damaged heart tissue are a new kind of important treatment options because of their potential to differentiate into cardiomyocytes. We in this experiment investigated the effect of different electrical stimulation time on the expression of myocardial specificity gene and protein in rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. The rBMSCs of second or third generation were randomly divided into three groups, i.e. electrical stimulation (ES) group, 5-Azacytidine (5-Aza) group and the control group. The rBMSCs in the ES groups with complete medium were exposed to 2 V, 2 Hz, 5 ms electrical stimulation for 0.5 h, 2 h, 4 h, and 6 h respectively every day for 10 days. Those in the 5-Aza group were induced by 5-Aza (10 μmol/L) for 24 h, and then cultured with complete medium for 10 days. Those in the control group were only cultured with complete medium, without any treatment, for 10 days. The rBMSCs' morphological feature in each group was observed with inverted phase microscope. The mRNA expression of myocyte-specific enhancer factor 2C (MEF-2C) and connexin 43 (Cx43) were examined with Real-Time quantitative PCR and the protein expression of MEF-2C, Cx43 were detected with Western Blot method. The results showed that the mRNA expression level of the MEF-2C, Cx43 and the protein expression level of MEF-2C, Cx43 were significantly higher in the ES group and 5-Aza group than those in the relative control group (P < 0.05). It suggests that electrical stimulation could play a part of role in the induction of the rBMSCs to differentiate into the cariomyocyte-like cells in vitro and the effectiveness of the electrical stimulation with 2 h/d had the best in our experiement. But the mechanism how electrical stimulation promotes the differentiation of rBMSC into cardiomyocyte is still unclear.