ObjectiveTo compare the curative effect of levetiracetam combined with lamotrigine and sodium valproate on postoperative patients with temporal lobe epilepsy. MethodsA total of 186 postoperative patients with temporal lobe epilepsy during August 2012 to August 2014 in our hospital were divided into levetiracetam combined with lamotrigine group (n=98), and sodium valproate group (n=88) based on postoperative different antiepileptic drugs treatment. Antiepileptic treatment were followed up for 12~48 months.Curative effect and adverse reaction were observed. Reservation rates and incidence rates of adverse reaction were calculated in the two groups. ResultsIn levetiracetam combined with lamotrigine group, EngelⅠratio was 72.4%(71), EngelⅡratio was 17.3%(17), EngelⅢratio was 7.1%(7), and EngelⅣratio was 3.2%(3);in sodium valproate group, EngelⅠratio was 67.0%(59), EngelⅡratio was 21.6%(19), EngelⅢratio was 9.1%(8), and EngelⅣratio was 2.3%(2), and the difference was not statistically significant in the same grade of two groups (P > 0.05).Reservation rate and incidence rate of adverse reaction in levetiracetam combined with lamotrigine group were 90.8%(89) and 15.3%(15) respectively.While those in sodium valproate group were 80.7%(71) and 36.4%(32) respectively.The differences were statistically significant between the two groups (P < 0.05). ConclusionsLevetiracetam combined with lamotrigine treatment on postoperative patients with temporal lobe epilepsy may have better curative effects than sodium valproate treatment, and levetiracetam combined with lamotrigine has its advantage in reservation rate and less adverse reaction.
This study aims to determine the salient brain regions with abnormal changes in white matter structures from diffusion tensor imaging (DTI) images of the patients with temporal lobe epilepsy (TLE), and to discriminate the patients with TLE from normal controls (NCs). Firstly, the DTI images from 50 subjects (28 NCs and 22 TLE) were acquired. Secondly, the four measures including the fractional anisotropy (FA), the mean diffusivity (MD), the axial diffusivity (AD) and the radial diffusivity (RD) were calculated. Thirdly, the tract-based spatial statistics (TBSS) was adopted to extract the measures in brain regions with significant differences between the two compared groups. Fourthly, the obtained measures were used as input features of the support vector machine (SVM) for classification, and the support vector machine-recursive feature elimination (SVM-RFE) was compared with the support vector machine-tract-based spatial statistics (SVM-TBSS) method. Finally, the essential brain regions and their spatial distribution were analyzed and discussed. The experimental results showed that the FA measures of the TLE group decreased significantly in the corpus callosum, superior longitudinal fasciculus, corona radiata, external capsule, internal capsule, inferior fronto-occipital fasciculus, fasciculus uncinatus and sagittal stratum, which were nearly bilaterally distributed, while the MD and RD increased significantly in most of these brain regions of the TLE group. Although the AD also increased, the differences were not statistically significant. The SVM-TBSS classifier obtained accuracies of 82%, 76% and 76% using the FA, MD and RD for classification, respectively, and 80% using combined measures. The SVM-RFE classifier obtained accuracies of 90%, 90% and 92% using the FA, MD and RD respectively, while the highest accuracy was 100% using combined measures. These results demonstrated that the SVM-RFE outperformed the SVM-TBSS, and the dominant characteristic influencing classification in brain regions were in associative and commissural fibers. These results illustrated that the measures of DTI images could reveal the abnormal changes in white matter structure of patients with TLE, providing effective information to clarify its pathological mechanism, localize the focus and diagnose automatically.
ObjectiveTo explore the dynamic changes of microvessels in the hippocampal CA3 area in mice model of temporal lobe epilepsy (TLE) induced by pilocarpine. MethodsEighteen health SPF male C57BL/6 mice were randomly divided into control group and status epilepticus (SE) group. The SE group was subdivided into three groups:SE-7 days, SE-28 days and SE-56 days. SE was induced by intraperitoneal injection of pilocarpine. And immunohistochemical staining was used to detected the localization of platelet endothelial cell adhesion molecule-1 (PECAM-1). ResultsIn the control group, PECAM-1 labeled microvessels arranged in a layered structure, and the microvessel of the orient layer was most prominent. After SE, the microvessels started to form an unorganized vascular plexus and appeared fibrous and fragmented, which was prominent at SE-28 days. Furthermore, the microvessels density increased the top at SE-28 days compared to the control (P < 0.001). ConclusionThe angiogenesis exists during the hippocampus formation in the mice model of TLE induced by pilocarpine, which could direct a new explanation for TLE formation and development.