ObjectiveTo preliminarily explore the effect of Osteoporosis Self-assessment Tool for Asians (OSTA) and Fracture Risk Assessment Tool (FRAX) on predicting osteoporosis and osteoporosis fracture in postmenopausal patients with maintenance hemodialysis (MHD).MethodsThirty-six postmenopausal patients undergoing MHD from August 2017 to October 2018 in Hemodialysis Center of Nephrology Department, West China Hospital of Sichuan University were selected. Relevant data such as age, height, and weight were collected. OSTA index and the 10-year probability of major osteoporotic fractures and 10-year probability of hip fractures of FRAX score were calculated. Bone mineral densities (BMD) of the hip and lumbar spine were measured by dual energy X-ray absorptiometry (DXA) at the same time. The value of OSTA index and FRAX scale in evaluating the risk of osteoporosis predicated on T value ≤−2.5 determined by DXA BMD and fracture in postmenopausal patients with MHD were analyzed.ResultsThe DXA BMD of the 36 patients showed that 50.0% (18/36) had a T value≤−2.5, and 30.6% (11/36) had a fracture history. BMD in postmenopausal patients with MHD was negatively correlated with FRAX score (model without BMD values), and positively correlated with OSTA index. The sensitivity and specificity of OSTA in the prediction of osteoporosis were 94.4% and 61.1%, respectively; and the sensitivity and specificity of FRAX (the model without BMD values) in the prediction of osteoporosis were 88.9% and 50.0%, respectively. The FRAX score with or without BMD had the same clinical value in predicting osteoporosis.ConclusionsPostmenopausal MHD patients have a higher risk of osteoporosis and fracture. Both OSTA index and FRAX scale can predict osteoporosis risk among postmenopausal MHD patients, and the FRAX scale with or without BMD has the same clinical value in predicting osteoporosis risk. In clinical work, for primary hospitals and dialysis centers lacking DXA, preliminary screening of osteoporosis in MHD patients can be performed with OSTA and FRAX scales.
Objective To explore the risk factors for long-term death of patients with acute myocardial infarction (AMI) and reduced left ventricular ejection fraction (LVEF), and develop and validate a prediction model for long-term death. Methods This retrospective cohort study included 1013 patients diagnosed with AMI and reduced LVEF in West China Hospital of Sichuan University between January 2010 and June 2019. Using the RAND function of Excel software, patients were randomly divided into three groups, two of which were combined for the purpose of establishing the model, and the third group was used for validation of the model. The endpoint of the study was all-cause mortality, and the follow-up was until January 20th, 2021. Cox proportional hazard model was used to evaluate the risk factors affecting the long-term death, and then a prediction model based on those risk factors was established and validated. Results During a median follow-up of 1377 days, 296 patients died. Multivariate Cox regression analysis showed that age≥65 years [hazard ratio (HR)=1.842, 95% confidence interval (CI) (1.067, 3.179), P=0.028], Killip class≥Ⅲ[HR=1.941, 95%CI (1.188, 3.170), P=0.008], N-terminal pro-brain natriuretic peptide≥5598 pg/mL [HR=2.122, 95%CI (1.228, 3.665), P=0.007], no percutaneous coronary intervention [HR=2.181, 95%CI (1.351, 3.524), P=0.001], no use of statins [HR=2.441, 95%CI (1.338, 4.454), P=0.004], and no use of β-blockers [HR=1.671, 95%CI (1.026, 2.720), P=0.039] were independent risk factors for long-term death. The prediction model was established and patients were divided into three risk groups according to the total score, namely low-risk group (0-2), medium-risk group (4-6), and high-risk group (8-12). The results of receiver operating characteristic curve [area under curve (AUC)=0.724, 95%CI (0.680, 0.767), P<0.001], Hosmer-Lemeshow test (P=0.108), and Kaplan-Meier survival curve (P<0.001) showed that the prediction model had an efficient prediction ability, and a strong ability in discriminating different groups. The model was also shown to be valid in the validation group [AUC=0.758, 95%CI (0.703, 0.813), P<0.001]. Conclusions In patients with AMI and reduced LVEF, age≥65 years, Killip class≥Ⅲ, N-terminal pro-brain natriuretic peptide≥5598 pg/mL, no percutaneous coronary intervention, no use of statins, and no use of β-blockers are independent risk factors for long-term death. The developed risk prediction model based on these risk factors has a strong prediction ability.
Objective To scoping review the risk prediction models for sarcopenia in China was conducted, and provide reference for scientific prevention and treatment of the disease and related research. Methods We systematically searched PubMed, Web of Science, Cochrane Library, Embase, China Knowledge Network, China Biomedical Literature Database, Wanfang Database, and Weipu Database for literature related to myasthenia gravis prediction models in China, with a time frame from the construction of the database to April 30, 2024 for the search. The risk of bias and applicability of the included literature were assessed, and information on the construction of myasthenia gravis risk prediction models, model predictors, model presentation form and performance were extracted. Results A total of 25 literatures were included, the prevalence of sarcopenia ranged from 12.16% to 54.17%, and the study population mainly included the elderly, the model construction methods were categorized into two types: logistic regression model and machine learning, and age, body mass index, and nutritional status were the three predictors that appeared most frequently. Conclusion Clinical caregivers should pay attention to the high-risk factors for the occurrence of sarcopenia, construct models with accurate predictive performance and high clinical utility with the help of visual model presentation, and design prospective, multicenter internal and external validation methods to continuously improve and optimize the models to achieve the best predictive effect.
ObjectiveTo systematically review the risk prediction models for readmission within 30 days after discharge in patients with chronic obstructive pulmonary disease (COPD), and provide a reference for clinical selection of risk assessment tools. MethodsDatabases including CNKI, Wanfang Data, VIP, CBM, PubMed, Embase, Web of Science, and Cochrane Library were searched for literature on this topic. The search time was from the inception of the database to April 25, 2023. Literature screening and data extraction were performed by two researchers independently. The risk of bias and applicability of the included literature were evaluated using the risk of bias assessment tool for predictive model studies. ResultsA total of 8 studies were included, including 14 risk prediction models for 30-day readmission of COPD patients after discharge. The total sample size was 125~8 263, the number of outcome events was 24~741, and the area under the receiver operating characteristic curve was 0.58~0.918. The top five most common predictors included in the model were smoking, comorbidities, age, education level, and home oxygen therapy. Although five studies had good applicability, all eight studies had a certain risk of bias. This is mainly due to the small sample size of the model, lack of reporting of blinding, lack of external validation, and inappropriate handling of missing data. ConclusionThe overall prediction performance of the risk prediction model for 30-day readmission of patients with COPD after discharge is good, but the overall research quality is low. In the future, the model should be continuously improved to provide a scientific assessment tool for the early clinical identification of patients with COPD at high risk of readmission within 30 days after discharge.
Objective To establish a machine learning based framework to rapidly screen out high-risk patients who may develop atrial fibrillation (AF) from patients with valvular heart disease and provide the information related to risk prediction to clinicians as clinical guidance for timely treatment decisions. Methods Clinical data were retrospectively collected from 1 740 patients with valvular heart disease at West China Hospital of Sichuan University and its branches, including 831 (47.76%) males and 909 (52.24%) females at an average age of 54 years. Based on these data, we built classical logistic regression, three standard machine learning models, and three integrated machine learning models for risk prediction and characterization analysis of AF. We compared the performance of machine learning models with classical logistic regression and selected the best two models, and applied the SHAP algorithm to provide interpretability at the population and single-unit levels. In addition, we provided visualization of feature analysis results. ResultsThe Stack model performed best among all models (AF detection rate 85.6%, F1 score 0.753), while XGBoost outperformed the standard machine learning models (AF detection rate 71.9%, F1 score 0.732), and both models performed significantly better than the logistic regression model (AF detection rate 65.2%, F1 score 0.689). SHAP algorithm showed that left atrial internal diameter, mitral E peak flow velocity (Emv), right atrial internal diameter output per beat, and cardiac function class were the most important features affecting AF prediction. Both the Stack model and XGBoost had excellent predictive ability and interpretability. ConclusionThe Stack model has the highest AF detection performance and comprehensive performance. The Stack model loaded with the SHAP algorithm can be used to screen high-risk patients for AF and reveal the corresponding risk characteristics. Our framework can be used to guide clinical intervention and monitoring of AF.
ObjectiveTo construct a demand model for electronic medical record (EMR) data quality in regards to the lifecycle in machine learning (ML)-based disease risk prediction, to guide the implementation of EMR data quality assessment. MethodsReferring to the lifecycle in ML-based predictive model, we explored the demand for EMR data quality. First, we summarized the key data activities involved in each task on predicting disease risk with ML through a literature review. Second, we mapped the data activities in each task to the associated requirements. Finally, we clustered those requirements into four dimensions. ResultsWe constructed a three-layer structured ring to represent the demand model for EMR data quality in ML-based disease risk prediction research. The inner layer shows the seven main tasks in ML-based predictive models: data collection, data preprocessing, feature representation, feature selection and extraction, model training, model evaluation and optimization, and model deployment. The middle layer is the key data activities in each task; and the outer layer represents four dimensions of data quality requirements: operability, completeness, accuracy, and timeliness. ConclusionThe proposed model can guide real-world EMR data governance, improve its quality management, and promote the generation of real-world evidence.
Surgical risk prediction is to predict postoperative morbidity and mortality with internationally authoritative mathematical models. For patients undergoing high-risk cardiac surgery, surgical risk prediction is helpful for decision-making on treatment strategies and minimization of postoperative complications, which has gradually arouse interest of cardiac surgeons. There are many risk prediction models for cardiac surgery in the world, including European System for Cardiac Operative Risk Evaluation (EuroSCORE), Ontario Province Risk (OPR)score, Society of Thoracic Surgeons (STS)score, Cleveland Clinic risk score, Quality Measurement and Management Initiative (QMMI), American College of Cardiology/American Heart Association (ACC/AHA)Guidelines for Coronary Artery Bypass Graft Surgery, and Sino System for Coronary Operative Risk Evaluation (SinoSCORE). All these models are established from the database of thousands or ten thousands patients undergoing cardiac surgery in a specific region. As different sources of data and calculation imparities exist, there are probably bias and heterogeneities when the models are applied in other regions. How to decrease deviation and improve predicting effects had become the main research target in the future. This review focuses on the progress of risk prediction models for patients undergoing cardiac surgery.
Abstract: Objective To establish a risk prediction model and risk score for inhospital mortality in heart valve surgery patients, in order to promote its perioperative safety. Methods We collected records of 4 032 consecutive patients who underwent aortic valve replacement, mitral valve repair, mitral valve replacement, or aortic and mitral combination procedure in Changhai hospital from January 1,1998 to December 31,2008. Their average age was 45.90±13.60 years and included 1 876 (46.53%) males and 2 156 (53.57%) females. Based on the valve operated on, we divided the patients into three groups including mitral valve surgery group (n=1 910), aortic valve surgery group (n=724), and mitral plus aortic valve surgery group (n=1 398). The population was divided a 60% development sample (n=2 418) and a 40% validation sample (n=1 614). We identified potential risk factors, conducted univariate analysis and multifactor logistic regression to determine the independent risk factors and set up a risk model. The calibration and discrimination of the model were assessed by the HosmerLemeshow (H-L) test and [CM(159mm]the area under the receiver operating characteristic (ROC) curve,respectively. We finally produced a risk score according to the coefficient β and rank of variables in the logistic regression model. Results The general inhospital mortality of the whole group was 4.74% (191/4 032). The results of multifactor logistic regression analysis showed that eight variables including tricuspid valve incompetence with OR=1.33 and 95%CI 1.071 to 1.648, arotic valve stenosis with OR=1.34 and 95%CI 1.082 to 1.659, chronic lung disease with OR=2.11 and 95%CI 1.292 to 3.455, left ventricular ejection fraction with OR=1.55 and 95%CI 1.081 to 2.234, critical preoperative status with OR=2.69 and 95%CI 1.499 to 4.821, NYHA ⅢⅣ (New York Heart Association) with OR=2.75 and 95%CI 1.343 to 5641, concomitant coronary artery bypass graft surgery (CABG) with OR=3.02 and 95%CI 1.405 to 6.483, and serum creatinine just before surgery with OR=4.16 and 95%CI 1.979 to 8.766 were independently correlated with inhospital mortality. Our risk model showed good calibration and discriminative power for all the groups. P values of H-L test were all higher than 0.05 (development sample: χ2=1.615, P=0.830, validation sample: χ2=2.218, P=0.200, mitral valve surgery sample: χ2=5.175,P=0.470, aortic valve surgery sample: χ2=12.708, P=0.090, mitral plus aortic valve surgery sample: χ2=3.875, P=0.380), and the areas under the ROC curve were all larger than 0.70 (development sample: 0.757 with 95%CI 0.712 to 0.802, validation sample: 0.754 and 95%CI 0.701 to 0806; mitral valve surgery sample: 0.760 and 95%CI 0.706 to 0.813, aortic valve surgery sample: 0.803 and 95%CI 0.738 to 0.868, mitral plus aortic valve surgery sample: 0.727 and 95%CI 0.668 to 0.785). The risk score was successfully established: tricuspid valve regurgitation (mild:1 point, moderate: 2 points, severe:3 points), arotic valve stenosis (mild: 1 point, moderate: 2 points, severe: 3 points), chronic lung disease (3 points), left ventricular ejection fraction (40% to 50%: 2 points, 30% to 40%: 4 points, <30%: 6 points), critical preoperative status (3 points), NYHA IIIIV (4 points), concomitant CABG (4 points), and serum creatinine (>110 μmol/L: 5 points).Conclusion Eight risk factors including tricuspid valve regurgitation are independent risk factors associated with inhospital mortality of heart valve surgery patients in China. The established risk model and risk score have good calibration and discrimination in predicting inhospital mortality of heart valve surgery patients.
ObjectiveTo systematically evaluate the risk prediction models for postoperative delirium in adults with cardiac surgery. MethodsThe SinoMed, CNKI, Wanfang, VIP, PubMed, EMbase, Web of Science, and Cochrane Library databases were searched to collect studies on risk prediction models for postoperative delirium in cardiac surgery published up to January 29, 2025. Two researchers screened the literature according to inclusion and exclusion criteria, used the PROBAST bias tool to assess the quality of the literature, and conducted a meta-analysis of common predictors in the model using Stata 17.0 software. ResultsA total of 21 articles were included, establishing 45 models with 28733 patients. Age, cardiopulmonary bypass time, history of diabetes, history of cerebrovascular disease, and gender were the top five common predictors. The area under the curve (AUC) of the 45 models ranged from 0.6 to 0.926. Fourteen out of the 21 studies had good applicability, while the applicability of the remaining seven was unclear; 20 studies had a high risk of bias. Meta-analysis showed that the incidence of postoperative delirium in adults with cardiac surgery was 18.6% [95%CI (15.7%, 21.6%)], and age [OR=1.04 (1.04, 1.05), P<0.001], history of cerebrovascular disease [OR=1.76 (1.46, 2.06), P<0.001], gender [OR=1.73 (1.43, 2.03), P<0.001], minimum mental state examination score [OR=1.00 (0.82, 1.17), P<0.001], and length of ICU stay [OR=5.59 (4.29, 6.88), P<0.001] weer independent influencing factors of postoperative delirium after cardiac surgery. ConclusionThe risk prediction models for postoperative delirium after cardiac surgery have good predictive performance, but there is a high overall risk of bias. In the future, large-sample, multicenter, high-quality prospective clinical studies should be conducted to construct the optimal risk prediction model for postoperative delirium in adults with cardiac surgery, aiming to identify and prevent the occurrence of postoperative delirium as early as possible.
Risk prediction models for postoperative pulmonary complications (PPCs) can assist healthcare professionals in assessing the likelihood of PPCs occurring after surgery, thereby supporting rapid decision-making. This study evaluated the merits, limitations, and challenges of these models, focusing on model types, construction methods, performance, and clinical applications. The findings indicate that current risk prediction models for PPCs following lung cancer surgery demonstrate a certain level of predictive effectiveness. However, there are notable deficiencies in study design, clinical implementation, and reporting transparency. Future research should prioritize large-scale, prospective, multi-center studies that utilize multiomics approaches to ensure robust data for accurate predictions, ultimately facilitating clinical translation, adoption, and promotion.