Objective To replace dysfunctional Fas gene and reconstruct the blocked Fas signal by using two kinds of prepared recombinantAdenovirus which have human Fas gene. Methods After the keloids derived from fibroblasts were infected by the Adenovicus, the expressions of Fas protein before the exposure and after the exposure was compared. Then the function of the newly produced Fas protein was detected. Results The highly improve expression of Fas protein in the infected keloid derived fibroblasts was detected. Obvious apoptosis was also detected in the infected keloid derived from fibroblasts under the condition of exposing to FasMcab. Conclusion ①The recombinant Adenovirus with Fas gene can transfect the Fas gene into keloidderived fibroblasts and highly improved the expression of Fas protein. The newly expressed Fas gene can reconstruct the blocked Fas signal. ②Ad-Fas(B) has better therapeutic effect in vitro gene therapy. ③ The correlation between keloid and Fas gene was further proved and it may pave the way for further gene therapy in keloid .
ObjectiveTo summarize recent progress in surgical management of progressive hemifacial atrophy (PHA), to analyse the key features of various methods of treatment, and to define subjects worthy of further researches. MethodsThe publications concerning the etiology and surgical management of PHA were reviewed, analyzed, and summarized. ResultsSurgical management serves as the primary treatment, including flap transposition, tissue flap reconstruction, free tissue grafting, prosthetic implants, and other surgical treatments. Each method has its own advantages and limitations. At present, comprehensive treatment are considered to be the most commonly method for PHA. ConclusionThe combined use of various surgical methods is the trend of surgical management of PHA; effective treatments specific to the etiology and minimally invasive surgical methods are still to be developed.
【Abstract】 Objective To investigate the cl inical effect of transplanting by auto-fat granule injection for mastatrophy post suckl ing. Methods From March 2000 to June 2006, 73 patients(146 breasts ) with mastatrophy post suckl ing were treated by transplanting auto-fat granule. The mastatrophy occurred between ages 28 and 52 years with a median of 37 years post suckl ing. The breasts shrank and their elasticity decreased gradually within 2-10 years post suckl ing. The autofat granule was obtained by l iposuction with syringe from patient’s abdomen, waist, buttocks and thighs, etc. After repeated wash and purification, the auto-fat granule was transplanted into the interspace behind the breast by injection. The quantity of auto-fat granule was 50-100 mL in each side of breast per transplantation at 3-6 months intervals, and the whole course of treatment needed 2-6 transplantations. Results The incisions in all cases healed primarily postoperatively. In 73 cases, 65 were followed up from 6 months to 3 years post operation. All patients had a significant improvement in their breast size and shape postoperatively and their breasts were soft and natural in appearance and feel. All of them had more perfect arcuation ofphysique and body with strengthened self-confidence, rel ieved mood and improved qual ity of l ife. However, small indurations were found sporadically in 7 cases (10 breasts) within 2-7 months, and calcifications in 5 cases (8 breasts) within 9-14 months post the first operation. Conclusion The transplantation by auto-fat granule injection for mastatrophy post suckl ing is an effective and practical method. The surgical technique is well worth performing in cl inical practice.
Objective Seed cells are the hotspot of tissue engineering research. To study the seed cells with high potential of adipogenic differentiation for applying the adipose tissue engineering and increasing the constructing efficiency of adipose tissue engineering. Methods Mature adipocytes (MA) and adipose-derived stromal cells (ADSCs) were harvestedfrom human fat aspirates via l iposuction by collagenase digestion. MA were cultured and induced to dedifferentiated adipocytes (DA) by ceil ing adherent culture method. DA and ADSCs were induced to adipogenic differentiation. The adipogenic abil ities of DA and ADSCs were compared by inverted phase contrast microscope observation, absorption spectrometry assay of oil red O staining, and cell counting of oil red O staining. Results MA could dedifferentiate into fibroblast-shaped DA. After adi pogenic differentiation, the inverted phase contrast microscope observation showed that there were much more l i pid droplet in DA than in ADSCs. Absorption spectrometry assay of oil red O staining showed there were significant l ipid droplet aggregation in DA 4 days of adipogenic induction. However, the same phenomenon could be observed in ADSCs at 10 days after differentiation. After 12 days, the absorption value of DA was higher than that of ADSCs, showing significant difference (P lt; 0.05). The cell counting of oil red O staining demonstrated that the adipogenic rates of DA and ADSCs were 65% ± 6% and 35% ± 5%, respectively, showing significant difference (P lt; 0.05). Conclusion The potential of adipogenic differentiation of DA is ber than that of ADSCs. DA is a promising seed cell of adipose tissue engineering.
【Abstract】 Objective To explore the optimal dosage, timing and cytotoxicity of bromodeoxyuridine (BrdU) labelling for rabbit adipose-derived stromal stem cells (ADSCs) in vitro so as to confirm its feasibil ity for stem cells labell ing and tracer means. Methods Six rabbits were used in this experiment, aged 8-12 weeks, weighing 1.5-2.0 kg and neglecting their gender. 1-2 mL fat was removed, the ADSCs were isolated and cultured using the adherence method in vitro . The 3rd passage of ADSCs was incubated with BrdU at 5, 10, 15 and 20 μg/mL (groups A, B, C and D)for 12, 24, 48 and 72 hours to identify the optimal BrdU concentration and incubating time for cell labell ing. Immunohistochemistry and trypanblau strain were performed respectively to calculate the labell ing index (positive rate) and the cells’ activity for different time after BrdU labell ing. The ADSCs without BrdU labell ing were used as control (Group E). Results The main appearance of primary ADSCs was short fusiform shape, and of the 3rd passage ADSCs long fusiform shape. The 3rd passage of ADSCs could differentiate into osteoblastsand adipocytes under corresponding inductive medium. The ADSCs’ nucleus show green fluor under fluorescence microscope after labeled by the BrdU. The labell ing ratio increased in groups A, B, C and D after incubating 12 hours, the mean labell ing ratio were 30.6% ±2.3%,32.4% ±1.9%,45.8% ±1.8%,50.8% ±3.1% , respectively, and the labell ing ratio of Group E was 0. There were significant differences between groups C, D and Group A (P lt; 0.01). The labell ing ratio of groups A, B, C and D were 45.9% ±2.0%,87.9% ±3.3%,90.6% ±2.9%,91.7% ±3.2%,respectively after 24 hours and the labell ing ratio of Group E was 0. There were significant differences between groups B, C, D and Group A (P lt; 0.01). The results of all groups after incubating48 hours and 72 h ours were similar to that after incubating 24 hours. The cell counting of groups A, B, C and D were better than that of Group E, but showing no siginificant differences(P gt; 0.05). Conclusion The most appropriate time for BrdU labell ing ADSCs is 48 hours, the most appropriate concentration is 10 μg/mL. The labell ing rate is high and cytotoxicity is l ittle.
Objective To review the mechanism of improved revascularization of free fat grafting with adipose-derived stem cells (ADSCs). Methods The literature related to the basic researches of ADSCs in free fat grafting and angiogenesis was reviewed. Results Angiogenesis is a sequence process in time and space which is regulated by various factors. ADSCs possess the capability of secreting many angiogenic growth factors and differentiating into various lineages.Conclusion ADSCs affect every process of angiogenesis with clear improved angiogenic effects, however, the mechanisms of angiogenic effects need the further researches.