Diabetic macular edema (DME) is a common ocular complication of diabetes patients. It mainly involve macular which is closely related with visual function, thus DME is one of the major reasons causing visual impairment or blindness for diabetes patients. How to reduce the visual damage of DME is always a big challenge in the ophthalmic practice. In the past three decades, there are tremendous developments in DME treatments, from laser photocoagulation, antiinflammation drugs to antivascular endothelial growth factor therapy. However, the mechanism of DME development is not yet completely clear; every existing treatment has its own advantages and weaknesses. Therefore DME treatment still challenges us to explore further to reduce the DME damages.
Objective To evaluate the efficacy and safety of dexamethasone intravitreal implant (Ozurdex) in the treatment of macular edema (ME) secondary to retinal vein occlusion (RVO). Methods Thirty-nine patients (39 eyes) with ME secondary to RVO were enrolles in this study. Of the patients, 27 were male and 12 were female. The mean age was (41.9±16.3) years. The mean course of disease was (5.0±5.3) months. The best corrected visual acuity (BCVA), intraocular pressure and optical coherence tomography (OCT) were performed. BCVA was measured by Early Treatment Diabetic Retinopathy Study charts. Central macular thickness (CMT) was measured by OCT. The mean BCVA was (13.4±15.3) letters. The mean intraocular pressure (IOP) was (14.1±2.8) mmHg (1 mmHg=0.133 kPa). The mean CMT was (876.1±437.9) μm. Of the 39 eyes, 33 were central RVO, 6 were branch RVO. Patients were categorized into ischemic (18 eyes)/non-ischemic (21 eyes) groups and previous treatment (22 eyes)/treatment naïve (17 eyes) groups. All eyes underwent intravitreal 0.7 mg Ozurdex injections. BCVA, IOP and CMT were assessed at 1, 2, 3, 6, 9, 12 months after injection. Three months after injection, intravitreal injections of Ozurdex, triamcinolone acetonide or ranibizumab could be considered for patients with ME recurrence or poor treatment effects. Change of BCVA, IOP and CMT were evaluated with paired t test. The presence of ocular and systemic adverse events were assessed. Results BCVA, IOP significantly increased and CMT significantly decreased at 1 month after injection compared to baseline in all groups (t=3.70, 3.69, 4.32, 3.08, 4.25, 6.09, 6.25, 4.02, 5.49, 8.18, 6.54, 5.73; P<0.05). Two months after injection, change of BCVA, IOP and CMT was most significant (t=4.93, 6.80, 6.71, 5.53, 4.97, 5.89, 5.13, 7.68, 7.31, 8.67, 8.31, 5.82; P<0.05). Twelve months after injection, there was no statistical difference regarding BCVA of ischemic RVO group and previous treatment group, compared to baseline (t=1.86, 0.67; P>0.05); BCVA of non-ischemic RVO group and treatment naïve group significantly increased compared to baseline (t=2.27, 2.30; P<0.05); there was no statistical difference regarding IOP in all groups (t=0.30, 0.13, 0.64, 1.53; P>0.05);however, CMT significantly decreased in all groups (t=4.60, 3.26, 3.00, 4.87; P<0.05). Twenty-seven eyes (69.2%) experiences ME recurrence (4.5±1.5) months after injection. Most common side-effect was secondary glaucoma. 41.0% eyes had IOP more than 25 mmHg, most of which were lowered to normal range with use of topical IOP lowering drugs. Four eyes (10.3%) presented with significant cataract progression and needed surgical treatment, all were central RVO eyes. No serious ocular or systemic adverse events such as vitreous hemorrhage, retinal detachment or endophthalmitis were noted. Conclusions Intravitreal injection of Ozurdex for patients with ME secondary to RVO is effective in increasing BCVA and lowering CMT in the first few months. Significant treatment effect could be seen at 1 month after injection and was most significant at 2 months after injection. The long-term vision of eyes in non-ischemic RVO group and treatment naïve group are better. 69.2% eyes experience ME recurrence at 4 months after injection. Short term adverse events were mostly secondary glaucoma and long term adverse events are mostly cataract progression.
ObjectiveTo analyze the influencing factors on clinical response to conbercept for diabetic macular edema (DME).MethodsA total of 51 patients (51 eyes) with DME who underwent intravitreal injection of conbercept were included in this retrospective study. The general information (age, sex, body mass index, smoking history, drinking history), blood glucose indicators (duration of diabetes, fasting blood glucose, HbA1c), blood pressure indicators (history of hypertension, systolic blood pressure, diastolic blood pressure), lipid indicators [total cholesterol (TC), high-density lipoprotein (HDL), apolipoprotein A (APOA)], biochemical indicators [neutrophil concentration, hemoglobin (HB), serum creatinine (Scr)] were collected. The best corrected visual acuity (BCVA) and macular central macular thickness (CMT) before and after treatment were comparatively analyzed. CMT reduced not less than 20% and BCVA increased by 2 lines as effective standards. Univariate analysis and multivariate logistic regression analysis were used to determine the factors affecting the efficacy of intravitreal injection of conbercept in patients with DME.ResultsUnivariate analysis showed that diastolic blood pressure, HDL, serum neutrophil concentration, baseline CMT and baseline BCVA were associated with edema regression (P<0.05); HbA1c was associated with vision improvement (P<0.05). Multivariate logistic regression analysis showed that there was a history of smoking (OR=0.122, 95% CI 0.017 − 0.887), low diastolic blood pressure (OR=0.850, 95%CI0.748 − 0.966), low HDL (OR=0.007, 95%CI 0.000 1 − 0.440), thin baseline CMT (OR=0.986, 95%CI0.977 − 0.995) were independent risk factors for failure outcome of edema regression (P<0.05); long duration of diabetes (OR=1.191, 95%CI 1.011 − 1.404), high APOA (OR=1.007, 95% CI 1.000 − 1.013) were independent risk factors for failure outcome of vision improvement. Age, fasting blood glucose, systolic blood pressure, TC, HB, Scr and other indicators had no effect on the efficacy of edema regression and vision improvement after treatment (P>0.05).ConclusionsSmoking history, long duration of diabetes, low diastolic blood pressure, low HDL level, high APOA level and thin baseline CMT are independent risk factors for the treatment of DME with intravitreal injection of conbercept.
ObjectiveTo observe the short-term efficacy of posterior sub-tenon injection of triamcinolone acetonide (PSTA) in the treatment of macular edema due to ischemic retinal vein occlusions (RVO). MethodsA retrospective clinical study. A total of 53 eyes of 53 patients with RVO macular edema diagnosed by fundus color photography, fundus fluorescein angiography and optical coherence tomography (OCT) were included in the study. The best corrected visual acuity (BCVA) was detected by the international standard visual acuity chart, and the results were converted to the logarithm of the minimum angle of resolution (logMAR) visual acuity. The central macular thickness (CMT) was measured by OCT. Among 53 eyes, there were 27 eyes with ischemic RVO macular edema (ischemic group) and 26 eyes with non-ischemic RVO macular edema (non-ischemic group). The mean logMAR BCVA was 0.82±0.37, mean CMT was (662.1±216.7) μm in ischemic group. The mean logMAR BCVA was 0.41±0.23, mean CMT was (548.0±161.9) μm. The differences of logMAR BCVA and CMT between the two groups were both statistically significant (t=4.745, 2.258; P<0.05). All eyes were treated with a single sub-Tenon injection of 0.4 ml triamcinolone acetonide suspension (100 mg/ml).The mean logMAR BCVA, CMT before and 1, 3 months after the treatment between the two groups were observed and compared. ResultsOn 1 and 3 months after treatment, the mean logMAR BCVA in the non-ischemic group (0.32±0.25 and 0.27±0.29) were improved compared with ischemic group (0.76±0.37 and 0.41±0.79), the difference was statistically significant (t=5.052, 5.240; P<0.05). The mean logMAR BCVA before and after treatment had no statistically significant difference in ischemic group (F=0.516, P>0.05), but had a statistically significant difference in non-ischemic group (F=7.685, P<0.05). On 1 and 3 months after treatment, the mean CMT in the ischemic group were (534.7±223.4), (470.8±234.7) μm, which were lower (127.4±28.28), (191.4±34.55) μm before treatment. In the non-ischemic group, the average CMT was (426.2±188.8), (371.3±200.6) μm, which were lower (103.1±33.1), (164.9±49.6) μm. There were statistically significant differences in the mean CMT between the ischemic group and the non-ischemic group (F=17.040, 10.360; P<0.05). In non-ischemic group, CMT had a bigger reduction compared to the the ischemic group (t=2.056, 2.103; P<0.05). The difference of CMT decrease value between two groups was not statistically significant (t=0.560, 0.441; P>0.05). On 1 month after the treatment, there were 3 and 5 eyes had a higher intraocular pressure than 21 mmHg (1 mmHg=0.133 kPa) in ischemic and non-ischemic group, respectively; but all of them returned to normal after drug treatment. There were no drugs and ocular injection related complications. ConclusionPSTA of ischemic RVO macular edema can lower the CMT in the short term, but can't significant improve the visual acuity.
ObjectiveTo observe the effect of conbercept combined with 577 nm subthreshold micropulse laser photocoagulation on diabetic macular edema (DME).MethodsA prospective randomized controlled clinical study. From June 2016 to June 2017, 68 eyes of 68 patients with DME diagnosed in Central Theater Command General Hospital were enrolled in the study. The patients were randomly assigned to two different treatment groups: 36 eyes (36 patients) in the conbercept combined with 577 nm subthreshold micropulse lase group (combined treatment group) and 32 eyes (32 patients) in conbercept group (drug treatment group). All patients received three initial intravitreous injection of conbercept and re-treatment was performed according to the criteria which has been disigned before. BCVA was measured by ETDRS charts. The central macular thickness (CMT), total macular volume (TMV) were measured by Topcon 3D-OCT 2000. The BCVA, CMT and TMV in the combined treatment group and the drug treatment group were 57.9±12.4 letters, 427.8±129.4 μm, 10.14±1.50 mm3 and 59.0±16.0 letters, 441.0 ±135.7 μm, 10.43±2.10 mm3, respectively. There was no significant difference (t=0.321, 0.410, 0.641; P=0.749, 0.683, 0.524). The follow-up period was more than 12 months. The changes of BCVA, CMT and TMV were compared between the two groups. Comparison of BCVA, CMT, TMV before and after treatment in and between groups using repeated measures analysis of variance.ResultsThe average annual injection times was 5.8±1.9 in the combined treatment group and 8.5±2.4 in the drug treatment group. The difference was statistically significant (t=5.12, P=0.000). The BCVA in the 3rd, 6th, 9th and 12th month were 64.9±11.1, 65.6±10.5, 67.0±10.8, 66.6±10.7 letters and 65.7±15.8, 66.9±15.7, 66.4±13.0, 67.3±16.4 letters, respectively, and there were significant differences compared with BCVA before treatment (F=34.234, 10.137; P=0.000, 0.000). The CMT were 335.2±105.9, 352.6±106.6, 336.2±120.8, 305.9±97.0 μm and 323.9±92.8, 325.5±90.2, 327.6±108.2, 312.2±106.8 μm, respectively. The TMV were 9.20±1.08, 9.26±1.20, 9.20±1.63, 9.05±1.18 mm3 and 9.19±1.21, 9.35±1.69, 9.09±1.20, 8.92±1.10 mm3, respectively. Compared with the CMT (F=12.152, 12.917; P=0.000, 0.000) and TMV (F=11.198, 11.008; P=0.000, 0.000) before treatment, the differences were statistically significant.ConclusionConbercept combined with 577 nm subthreshold micropulse laser and conbercept can effectively reduce CMT, TMV and improve BCVA in patients with DME, but combination therapy can reduce the injection times of conbercept.