OBJECTIVE: To determine the influence of basic fibroblast growth factor (bFGF) on endothelial cell (EC) proliferation in vitro and its possible mechanisms, and to examine the effect of both TNP-470 and dexamethasone (Dex) on the EC proliferation induced by bFGF. METHODS: Human umbilical vein endothelial cells were cultured and the proliferation of EC was quantified by a colorimetric assay using MTT reagent. The expression of nuclear factor-kappa B (NF-kappa B) and ki-67 was detected with SABC immunohistochemical method. RESULTS: bFGF stimulated the EC proliferation and enhanced the expression of NF-kappa B and ki-67 in nucleus; TNP-470 and Dex suppressed EC proliferation induced by bFGF, and reduced the expression of NF-kappa B and ki-67 in nucleus. CONCLUSION: The above results indicate that the possible mechanisms of EC proliferation stimulated by bFGF come from that bFGF can activate NF-kappa B to promote the synthesis of DNA and EC mitosis. TNP-470 and Dex inhibited EC proliferation stimulated by bFGF by inhibiting NF-kappa B.
OBJECTIVE: To evaluate the effect of vascular endothelial growth factor(VEGF) 165 or basic fibroblast growth factor (bFGF), which was slowly-released in fibrin glue patch, on expanded prefabricated flaps in rabbits to facilitate the neoangiogenesis process. METHODS: A total of 53 rabbits were divided randomly into 6 groups. The central auricular vascular bundle of the ear was implanted into the expanded prefabricated flap as the pedicle. Fibrin glue, sandwiched between the expander and the implanted vessels, was adopted for topical delivering and slow-releasing of VEGF(625 ng) or bFGF(2880U). After 14 days, the island flap with the implanted vascular bundles as the pedicle was elevated, sutured back to its original position and then harvested more 3 days later. Neoangiogenesis was measured by digital recording of survival area, laser Doppler flowmetry, PCNA immunohistochemistry, TUNEL, ink and PbO infusions. RESULTS: When compared with the other groups, flap survival improved; neoangiogenesis of flaps increased, together with the blood flow enhanced in the groups applied growth factors. The reduced cellular apoptosis and the increased proliferation were also observed. CONCLUSION: VEGF or bFGF slowly-released by fibrin glue shows the potential to facilitate neoangiogenesis and accelerate maturation of the expanded prefabricated flap.
【Abstract】 Objective Sonic hedgehog (Shh) signaling pathway is involved in an important part of regulating angiogenesis. To investigate the effects of recombinant Shh N-terminant (rShh-N) on the expression and secretion of angiogenesis-related factor—vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Methods Bone marrow mesenchymal stem scells (BMSCs) were isolated from 3-day-old healthy Sprague Dawley rats and cultured to passage 3 in vitro. rShh-N at the concentrations of 0, 10, 100, and 200 ng/mL were applied to culture BMSCs in groups A, B, C, and D, respectively. At 12, 24, 48, and 72 hours of culture, the expressions of VEGF and bFGF mRNA and the levels of VEGF and bFGF in supernatant were measured with real-time quantitative PCR and ELISA, respectively. Results At the gene level, compared with group A, the expressions of VEGF and bFGF mRNA were enhanced in group D (P lt; 0.05) and the upregulation was more significant at 12 and 48 hours than 24 and 72 hours (P lt; 0.01). In group C, bFGF mRNA expression was substantially promoted at 12-72 hours (P lt; 0.05) and VEGF mRNA level was upregulated at 24-72 hours (P lt; 0.05), and both reached peak at 72 hours (P lt; 0.01). In group B, VEGF mRNA expression was inhibited at 12 hours (P lt; 0.05), but the level increased at 48 and 72 hours (P lt; 0.05); bFGF mRNA expression was obviously promoted at 12-48 hours (P lt; 0.05) and the maximum appeared at 48 hours (P lt; 0.01). At the protein level, the secretion of VEGF and bFGF in group D was significantly increased at 12-72 hours, as compared with group A (P lt; 0.05). In group C, VEGF and bFGF secretion was increased at 24-72 hours (P lt; 0.05). The secretion of VEGF in group B was inhibited at 12 and 48 hours (P lt; 0.05) and was promoted at 24 hours (P lt; 0.05); bFGF secretion was up-regulated at 24 and 48 hours (P lt; 0.05). The secretion of VEGF and bFGF in supernatant at 【Abstract】 Objective Sonic hedgehog (Shh) signaling pathway is involved in an important part of regulating angiogenesis. To investigate the effects of recombinant Shh N-terminant (rShh-N) on the expression and secretion of angiogenesis-related factor—vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Methods Bone marrow mesenchymal stem scells (BMSCs) were isolated from 3-day-old healthy Sprague Dawley rats and cultured to passage 3 in vitro. rShh-N at the concentrations of 0, 10, 100, and 200 ng/mL were applied to culture BMSCs in groups A, B, C, and D, respectively. At 12, 24, 48, and 72 hours of culture, the expressions of VEGF and bFGF mRNA and the levels of VEGF and bFGF in supernatant were measured with real-time quantitative PCR and ELISA, respectively. Results At the gene level, compared with group A, the expressions of VEGF and bFGF mRNA were enhanced in group D (P lt; 0.05) and the upregulation was more significant at 12 and 48 hours than 24 and 72 hours (P lt; 0.01). In group C, bFGF mRNA expression was substantially promoted at 12-72 hours (P lt; 0.05) and VEGF mRNA level was upregulated at 24-72 hours (P lt; 0.05), and both reached peak at 72 hours (P lt; 0.01). In group B, VEGF mRNA expression was inhibited at 12 hours (P lt; 0.05), but the level increased at 48 and 72 hours (P lt; 0.05); bFGF mRNA expression was obviously promoted at 12-48 hours (P lt; 0.05) and the maximum appeared at 48 hours (P lt; 0.01). At the protein level, the secretion of VEGF and bFGF in group D was significantly increased at 12-72 hours, as compared with group A (P lt; 0.05). In group C, VEGF and bFGF secretion was increased at 24-72 hours (P lt; 0.05). The secretion of VEGF in group B was inhibited at 12 and 48 hours (P lt; 0.05) and was promoted at 24 hours (P lt; 0.05); bFGF secretion was up-regulated at 24 and 48 hours (P lt; 0.05). The secretion of VEGF and bFGF in supernatant at
Objective To evaluate the effect of composite (bFGF/PDPB) of basic fibroblast growth factor(bFGF) and partially deproteinized bone (PDPB) on the repair of femoral head defect. Methods Forty-eight femoral heads with defect derived from 24 New Zealand rabbits were divided into 3 groups at random, which were implanted with bFGF/PDPB(group A), PDPB(group B) and nothing(group C) respectively.The rabbits were sacrificed at 2,4,and8 weeks after operation, and then the femoral heads were obtained. The specimens injected with Chinese ink were created. Then X-ray examination, histopathological and morphological examination of blood vessel, and image analysis were made. Results The bone defects healed completely 8 weeks after operation in group A. The implants in the repaired tissue were not substituted completely in group B. The bone defects did not heal completely in group C. Two weeks after operation, affluent newly formed vessels were seen in repaired areas in groupA. No significant difference between group A and group B was observed 8 weeks after operation. In group C, newly formed vessels were scarce 2, 4, and 8 weeks after operation. There were 3 sides rated excellent, 2 good and 1 fair in group A; 1 excellent, 2 good, 2 fair and 1 poor in group B; and 1 fair and 5 poor in group C according to the X-ray evaluation 8 weeks after operation. Eight weeks after operation, the volume fraction of bone trabecula in repaired tissue was higher in group A than that in group B (Plt;0.05), and the fraction in group C was thelowest among the 3 groups (Plt;0.05). Conclusion The composite ofbFGF and PDPB can effectively promote the repair of femoral head defect of rabbit.
OBJECTIVE: To observe the curative effects of basic fibroblast growth factor (bFGF) on anus wound healing. METHODS: From April 1996 to December 2000, out of 109 patients with anus trauma, hemorrhoidectomy or fistula resection, 68 were treated with bFGF as the experimental group, while 41 were treated routinely as the control group. The healing of the wound, the general and local reaction were observed. RESULTS: The healing time of the experimental group was(17.00 +/- 1.54) days while that of the control group was(20.00 +/- 1.16) days (P lt; 0.01). Three weeks after operation, the healing rates of the experimental and control groups were 97.1% and 87.8%, respectively (P lt; 0.01). No general or local detrimental reactions were found in two groups. CONCLUSION: Local application of bFGF can accelerate the healing of anus wound, and the patients have little pain.
OBJECTIVE To investigate the effects of basic fibroblast growth factor(bFGF) on repairing transected sciatic nerves in rats. METHODS The animal models of the transected sciatic nerve of 40 SD rats were established, which divided into 4 groups: normal saline (NS) group, nerve growth factor (NGF) group, bFGF group and normal control group. The epineurium of the transected sciatic nerve was sutured under microscope, then bFGF or NGF was dropped into local sites and injected intramuscularly once a day for 30 days after operation. Functional repair for the transected sciatic nerves was studied by nerve conductive velocity (NCV) and sciatic nerve function index (SFI). RESULTS As a criterion, the level of the normal control group was regarded as zero, SFI of NS group, NGF group and bFGF group were -114.30 +/- 10.34, -70.50 +/- 11.01, -50.45 +/- 7.82 respectively at 1 month after operation, and they were -54.96 +/- 16.46, -35.21 +/- 10.80, -27.53 +/- 11.23 respectively in 3 months after operation. NCV of bFGF group was significantly faster than NS group and NGF group. CONCLUSION bFGF can significantly promote the functional repair of injured peripheral nerve, and its effects are better than NGF.
Objective To study the adhesion-preventing effect of basic fibroblast growth factor(bFGF) combined slow-releasing degradable membrane.Methods The bFGF combined slow-releasing degradable membrane was made from bFGF and the reagent which could promote fibrinogen synthesize. Sixty-six SD rats were divided into groups A,B,C randomly (22 rats each group). In group A, sutured achilles tendon were encapsulated with bFGF combined slow-releasing degradable membrane;in group B, sutured achilles tendon were encapsulated with degradable membrane without any drug; in group C, achilles tendon were only sutured. Ninety days later, light-microscope, electronmicroscopoe, figureanalysing, hydroxyproline content, extent of peritendon adhesion and biomechanic test were evaluated.Results ①The amount of fibroblast and fibrinogen inside the sutured tendon in group A was larger than that inits peripheral connective tissue and in groups B and C (P<0.05). Thecontent of hydroxyproline and the ultimate tensile strength in group A was higher than those in groups B and C(P<0.01).② The peripheral tissue in group A almostremains the formal loose connective tissue, but it became dense connective tissue in groups B and C and grew into the tendon. Moreover, the extent of adhesion in group A was lesser than that in groups B, C according to the mensuration of peritendon adhesion.Conclusion The bFGF combined slow-releasing degradable membrane can make the intrinsic healing of tendon faster than peripheral
Objective To construct a mammalian expression vector ofbasic fibroblast growth factor (bFGF) and to investigate the expression of bFGFin vitro and in vivo. Methods A mammalian expression vector pcDNA3.1/myc-His(-)C-bFGF was constructed with gene cloning technique. The mammalian expression system was prepared and purified. The expression of bFGF cDNAin cultured transfected cells was examined by RT-PCR and cell immunohistochemistry. The recombinant plasmids, pcDNA3.1/myc-His(-)C-bFGF and pCD2-VEGF121, were transferred into rabbit cervical muscle by direct injection of plasmid following electric pulses in vivo. The transferred gene expression and the biological effect were measured by use of histochemistry and immunohistochemistry analysis. Results The eukaryon expression system pcDNA3.1/myc-His(-)C-bFGF could express the target protein bFGF in vitro. The recombinant plasmids, pcDNA3.1/myc-His(-)C-bFGF and pCD2-VEGF121 were transferred into muscles flap in vivo successfully. The active proteins bFGF and VEGF121were expressed at high levels. Blood vessels increased significantly in the muscles, and blood circulation was improved by local angiogenesis. Conclusion Theeukaryon expression vector of bFGF is constructed and can be expressed successfully in vitro and in vivo. That is a primary preparation for the research on tissue transplantation and tissue engineering with bFGF gene therapy.
Objective To observe the impact of collagen patches using 1-ethyl-3- (3-dimethylaminopropyl) carbod-iimide hydrochloride chemistry (EDC) to conjugate vascular endothelial growth factor (VEGF) + basic fibroblast growth factor (bFGF) or VEGF alone on the survival rate of transplanted human bone morrow mesenchymal stem cells (hBM-MSCs)in vitro and in vivo. Methods Collagen patches which were activated by EDC were used as the control group,and EDC activated collagen patches that were conjugated with VEGF or VEGF + bFGF were used as the experiment groups(VEGF group and VEGF + bFGF group). hBM-MSCs (0.5×106/patch) were used as seeding cells to construct engineered heart tissue (EHT). MTT assay was performed to assess in vitro proliferation of hBM-MSCs on 3 different collagen patches. Ventricular aneurysm model after myocardial infarction was created by left anterior descending artery (LAD) ligation in male SD rats,and EHT which were constructed with 3 different patches were used for ventricular plasty. Four weeks later,immunofluorescence staining was used to examine arteriole density (anti-α-SMA staining) and transplanted cell survival (anti-h-mitochondria staining). Results (1) hMSCs proliferation in VEGF group and VEGF + bFGF group was significantly better than that in the control group on the 2nd and 4th day after cell transplantation (P<0.05); (2) Four weeks afterEHT implantation,immunofluorescence staining for α-SMA revealed that arteriole density of VEGF group and VEGF + bFGF group was significantly higher than that of the control group (P<0.05); (3) Immunofluorescence staining forh-mitochondria showed that survival rates of transplanted hBM-MSCs of VEGF group and VEGF + bFGF group were significantly higher than that of the control group (P<0.05); (4) There was a significantly positive correlation between survival rate of hBM-MSCs and arteriole density (r 2=0.99,P=0.02). Conclusion VEGF or VEGF + bFGF conjugated collagen patch can significantly improve hBM-MSCs proliferation in vitro and enhance survival rate of transplanted hBM-MSCs by accelerating revascularization of EHT in vivo.
OBJECTIVE: To localize the distribution of basic fibroblast growth factor (bFGF) and transforming growth factor-beta(TGF-beta) in tissues from dermal chronic ulcer and hypertrophic scar and to explore their effects on tissue repair. METHODS: Twenty-one cases were detected to localize the distribution of bFGF and TGF-beta, among them, there were 8 cases with dermal chronic ulcers, 8 cases with hypertrophic scars, and 5 cases of normal skin. RESULTS: Positive signal of bFGF and TGF-beta could be found in normal skin, mainly in the keratinocytes. In dermal chronic ulcers, positive signal of bFGF and TGF-beta could be found in granulation tissues. bFGF was localized mainly in fibroblasts cells and endothelial cells and TGF-beta mainly in inflammatory cells. In hypertrophic scar, the localization and signal density of bFGF was similar with those in granulation tissues, but the staining of TGF-beta was negative. CONCLUSION: The different distribution of bFGF and TGF-beta in dermal chronic ulcer and hypertrophic scar may be the reason of different results of tissue repair. The pathogenesis of wound healing delay in a condition of high concentration of growth factors may come from the binding disorder of growth factors and their receptors. bFGF may be involved in all process of formation of hypertrophic scar, but TGF-beta may only play roles in the early stage.