west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Bayesian" 25 results
  • Application of bnma package of R software in Bayesian network meta-analysis

    The "bnma" package is a Bayesian network meta-analysis software package developed based on the R programming language. The network meta-analysis was performed utilizing JAGS software, which yielded relevant results and visual graphs. Moreover, this software package provides support for various data structures and types, while also providing the advantages of flexible utilization, user-friendly operation, and deliver of rich and accurate outcomes. In this paper, using a network meta-analysis example of different therapies for androgenetic alopecia, the operational process of conducting network meta-analysis using the "bnma" package is briefly introduced.

    Release date: Export PDF Favorites Scan
  • Method of dynamically evaluating individual efficacy of traditional Chinese medicine based on Bayesian N-of-1 trials

    The method of evaluating clinical efficacy of traditional Chinese medicine is one of the hotspots in the field of traditional Chinese medicine in recent years. How to dynamically evaluate individual efficacy is one of the key scientific problems to explain the clinical efficacy of traditional Chinese medicine. At present, there are no recognized methods of evaluating individual efficacy of traditional Chinese medicine. In this study, we provided a method of dynamically evaluating individual efficacy of traditional Chinese medicine based on Bayesian N-of-1 trials after analyzing the current status of researches on methods of evaluating individual efficacy of traditional Chinese medicine. This method has the advantages of both N-of-1 trials and Bayesian multilevel models. It is feasible to evaluate individual efficacy of traditional Chinese medicine from the perspective of the design and analysis method. This study can provide an important basis for enriching and improving the methodology of evaluating individual efficacy of traditional Chinese medicine.

    Release date:2023-12-16 08:39 Export PDF Favorites Scan
  • Evaluation of statistical performance for rare-event meta-analysis

    ObjectiveTo examine statistical performance of different rare-event meta-analyses methods.MethodsUsing Monte-Carlo simulation, we set a variety of scenarios to evaluate the performance of various rare-event meta-analysis methods. The performance measures included absolute percentage error, root mean square error and interval coverage.ResultsAcross different scenarios, the absolute percentage error and root mean square error were similar for Bayesian logistic regression model, generalized mixed linear effects model and continuity correction, but the interval coverage was higher with Bayesian logistic regression model. The statistical performances with Mantel-Haenszel method and Peto method were consistently suboptimal across different scenarios.ConclusionsBayesian logistic regression model may be recommended as a preferred approach for rare-event meta-analysis.

    Release date:2021-04-23 04:04 Export PDF Favorites Scan
  • An introduction of common dynamic predictive modeling methods in medical research

    The risk prediction model (RPM) can be used to predict the risks of disease for individuals, playing an extremely important role in decision-making regarding disease prevention, treatment, and prognostic management. Most of the existing RPMs only utilize a single-time cross-section of variable data, so-called static models, which fail to consider the many changes during disease progression and lead to limited prediction accuracy. Dynamic prediction models can incorporate longitudinal data such as repeated measurements of variables during follow-up to capture the longitudinal changes in individual characteristics over time, describe the dynamic trajectory of individual disease risk and improve the prediction accuracy of the models; however, their application in medical research is still relatively small. In this paper, we conducted a systematic literature search to summarize the commonly used dynamic models: joint model, landmark model, and Bayesian dynamic model. By introducing their application scenarios, advantages and disadvantages, and software implementations and conducting comparisons, we aimed to provide methodological references for the future application of dynamic prediction models in medical research.

    Release date:2022-11-14 09:36 Export PDF Favorites Scan
  • Implementation of Bayesian network meta-analysis with BUGSnet package in R software

    BUGSnet is a powerful R project package for Bayesian network meta-analysis. The package is based on JAGS and enables high-quality Bayesian network meta-analysis according to recognized reporting guidelines (PRISMA, ISPOR-AMPC-NCA and NICE-DSU). In this paper, we introduced the procedure of the BUGSnet package for Bayesian network meta-analysis through an example of network meta-analysis of steroid adjuvant treatment of pemphigus with continuous or dichotomous data.

    Release date:2022-05-31 01:32 Export PDF Favorites Scan
  • Individualized risk assessment model based on Bayesian networks and implementation by R software

    This study introduced the construction of individualized risk assessment model based on Bayesian networks, comparing with traditional regression-based logistic models using practical examples. It evaluates the model's performance and demonstrates its implementation in the R software, serving as a valuable reference for researchers seeking to understand and utilize Bayesian network models.

    Release date: Export PDF Favorites Scan
  • Bayesian meta-analysis methods for integrating randomised and non-randomised intervention studies and R language implementation

    ObjectiveTo introduce a Bayesian meta-analysis method for quantitatively integrating evidence from both randomized controlled trials (RCTs) and non-randomized studies of interventions (NRSIs), using concrete examples and R code, thereby supporting the combined utilization of both study types in empirical research. MethodsUsing a meta-analysis on the association between low-dose methotrexate exposure and melanoma as an example, we employed the jarbes package in R to conduct both a traditional Bayesian meta-analysis and a Bayesian nonparametric bias-correction meta-analysis model for quantitative integration. The differences between the two pooled results were then compared. ResultsThe traditional Bayesian meta-analysis indicated a posterior probability of 99% that low-dose methotrexate exposure increases melanoma risk. The Bayesian nonparametric bias-correction meta-analysis model showed a posterior probability of 92% that low-dose methotrexate exposure increases melanoma risk. ConclusionCompared to the traditional Bayesian meta-analysis model, the nonparametric bias-correction meta-analysis model is more suitable for quantitatively integrating evidence from RCTs and NRSIs, demonstrating potential for broader application. However, the comparability between the two evidence bodies should be carefully assessed prior to quantitative integration.

    Release date: Export PDF Favorites Scan
  • Brief introduction of Bayesian N-of-1 trials

    Bayesian N-of-1 trials is increasingly popular in recent years. This study introduced the principle, statistical requirements, application status, advantages and disadvantages of Bayesian N-of-1 trials. Although the application of Bayesian N-of-1 trials is still limited in small scale and some problems remain to be solved, but it can provide more posterior information, and it can be the most important type of N-of 1 trial in future.

    Release date:2017-07-19 10:10 Export PDF Favorites Scan
  • Research of Effective Network of Emotion Electroencephalogram Based on Sparse Bayesian Network

    Exploring the functional network during the interaction between emotion and cognition is an important way to reveal the underlying neural connections in the brain. Sparse Bayesian network (SBN) has been used to analyze causal characteristics of brain regions and has gradually been applied to the research of brain network. In this study, we got theta band and alpha band from emotion electroencephalogram (EEG) of 22 subjects, constructed effective networks of different arousal, and analyzed measurements of complex network including degree, average clustering coefficient and characteristic path length. We found that: ① compared with EEG signal of low arousal, left middle temporal extensively interacted with other regions in high arousal, while right superior frontal interacted less; ② average clustering coefficient was higher in high arousal and characteristic path length was shorter in low arousal.

    Release date: Export PDF Favorites Scan
  • Performing Bayesian meta-analysis and meta-regression using bmeta package in R software

    The R software bmeta package is a package that implements Bayesian meta-analysis and meta-regression by invoking JAGS software. The program is based on the Markov Chain Monte Carlo (MCMC) algorithm to combine various effect quantities (OR, MD and IRR) of different types of data (dichotomies, continuities and counts). The package has the advantages of fewer command function parameters, rich models, powerful drawing function, easy of understanding and mastering. In this paper, an example is presented to demonstrate the complete operation flow of bmeta package to implement bayesian meta-analysis and meta-regression.

    Release date:2021-01-26 04:48 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content