Objective To study and compare the effect of end-to-end and end-to-side neurorrhaphy between the reci pient’s musculocutaneous nerve and the donor’s ulnar nerve, and to observe the regeneration of peri pheral nerve and muscle refection. Methods Sixty male SD rats (weighing 200-250 g) were randomized into 2 groups (n=30 per group), and made the musculocutaneous nerve injury model. In group A, the donor’s nerve was transected for end-to-end neurorrhaphy.In group B, an epineurial window was exposed and the distal end of the muscle branch of musculocutaneous nerve was sutured to the side of the ulnar nerve. Electromyography was performed, biceps wet weight ratio, muscle fiber cross-sectional area, and count of myel inated nerve fiber (CMF) were measured at 4 and 12 weeks postoperatively. The behavior changes of the rats were observed. Results At 4 weeks, the nerve conduction velocity (NCV) and the latency ampl itude (AMP) of group A were significantly higher than those of group B (P lt; 0.05); at 12 weeks, there was no significant difference in the NCV and AMP between groups A and B (P gt; 0.05). At 4 and 8 weeks, there was no significant difference in biceps wet weight ratio and muscle fiber cross-sectional area between groups A and B (P gt; 0.05). At 4 weeks, the CMF was 230.15 ± 60.25 in group A and 160.73 ± 48.77 in group B, showing significant difference (P lt; 0.05); at 12 weeks, it was 380.26 ± 10.01 in group A and 355.63 ± 28.51 in group B, showing no significant difference (P gt; 0.05). Conclusion Both end-to-end and end-to-side neurorrhaphy have consistent long-term effect in repair of brachial plexus upper trunk injury.
ObjectiveTo investigate the management strategies of clavicular fracture combined with brachial plexus injury and its effectiveness. MethodsBetween January 2006 and January 2012, 27 cases of clavicular fracture combined with brachial plexus injury were treated. There were 18 males and 9 females, aged 18-42 years (mean, 25.3 years). The causes of injury were traffic accident in 12 cases, falling from height in 10 cases, bruise in 3 cases, machinery injury in 2 cases. According to the Robinson classification, the clavicular fractures were rated as type Ⅰ in 2 cases, as typeⅡin 20 cases, and as type Ⅲ in 5 cases; there were 12 cases of total brachial plexus root avulsion injury, 10 cases of bundle branch injury, and 5 cases of hematoma formation and local nerve compression or injury. The injury to operation time was 6 hours to 14 days (mean, 4 days). Brachial plexus injury was repaired by epineurium neurolysis, nerve anastomosis, or nerve transposition after the exploration of the plexus; and fracture was fixed after open reduction. Sensory grading standard (S0-S4) by UK Medical Research Council (MRC) was used to evaluate the recovery of sensory function, and muscle strength grading standard (M0-M5) by MRC to evaluate the innervating muscle strength. ResultsThe incisions healed by first intention. All patients were followed up 18-36 months (mean, 26.3 months). All fracture achieved cl inical healing at 12-17 weeks (mean, 15 weeks). No complication of loosening or breakage of internal fixation occurred. The patients had no pain of shoulder in abduction. At 18 months after operation, the shoulder abduction was more than or equal to 60° in 8 cases, 30-60° in 8 cases, and less than 30° in 11 cases. The recovery of biceps muscle strength was more than or equal to M3 in 18 cases and less than M3 in 9 cases; the recovery of wrist flexion or flexor muscle strength was more than or equal to M3 in 13 cases and less than M3 in 14 cases. The sensory function recovery of median nerve was S3 in 14 cases, S1-S2 in 9 cases, and S0 in 4 cases. The shoulder abduction, elbow and wrist flexor motor function did not recover in 2 patients with total brachial plexus root avulsion injury. ConclusionIt is beneficial to the recovery of nerve function to early repair of the brachial plexus injury by exploration of the plexus combined with open reduction and fixation of clavicular fractures, the short-term effectiveness is good.
Objective To provide the anatomical basis of contralateral C7 root transfer for the recovery of the forearm flexor function. Methods Thirty sides of adult anti-corrosion specimens were used to measure the length from the end of nerves dominating forearm flexor to the anastomotic stoma of contralateral C7 nerve when contralateral C7 nerve transfer was used for repair of brachial plexus lower trunk and medial cord injuries. The muscle and nerve branches were observed. The length of C7 nerve, C7 anterior division, and C7 posterior division was measured. Results The length of C7 nerve, anterior division, and posterior division was (58.8 ± 4.2), (15.4 ± 6.7), and (8.8 ± 4.4) mm, respectively. The lengths from the anastomotic stoma to the points entering muscle were as follow: (369.4 ± 47.3) mm to palmaris longus, (390.5 ± 38.8) mm (median nerve dominate) and (413.6 ± 47.4) mm (anterior interosseous nerve dominate) to the flexor digitorum superficialis, (346.2 ± 22.3) mm (median nerve dominate) and (408.2 ± 23.9) mm (anterior interosseous nerve dominate) to the flexor digitorum profundus of the index and the middle fingers, (344.2 ± 27.2) mm to the flexor digitorum profundus of the little and the ring fingers, (392.5 ± 29.2) mm (median nerve dominate) and (420.5 ± 37.1) mm (anterior interosseous nerve dominate) to the flexor pollicis longus, and (548.7 ± 30.0) mm to the starting point of the deep branch of ulnar nerve. The branches of the anterior interosseous nerve reached to the flexor hallucis longus, the deep flexor of the index and the middle fingers and the pronator quadratus muscle, but its branches reached to the flexor digitorum superficials in 5 specimens (16.7%). The branches of the median nerve reached to the palmaris longus and the flexor digitorum superficial, but its branches reached to the deep flexor of the index and the middle fingers in 10 specimens (33.3%) and to flexor hallucis longus in 6 specimens (20.0%). Conclusion If sural nerve graft is used, the function of the forearm muscles will can not be restored; shortening of humerus and one nerve anastomosis are good for forearm flexor to recover function in clinical.
OBJECTIVE: To investigate the variation of neurotrophic factors expression in spinal cord and muscle after root avulsion of brachial plexus. METHODS: Forty-eight Wistar rats were involved in this study and according to the observing time in 1st day, 1st week, 4th week, 8th week, and 12th week after avulsion, and the control, were divided into 6 groups. By immunohistochemical and hybridization in situ assays, the expression of nerve growth factor (NGF) on muscle, basic fibroblast growth factor(bFGF) and its mRNA on the neurons of corresponding spinal cord was detected. Computer image analysis system was used to calculate the result. RESULTS: After the root avulsion of brachial plexus occurred, expression of NGF increased and reached to the peak at the 1st day. It subsided subsequently but was still higher than normal control until the 12th week. While expression of bFGF and its mRNA increased in the neurons of spinal cord and reached to the peak at the 1st week. Then it dropped down and at the 12th week it turned lower than normal control. CONCLUSION: After root avulsion of brachial plexus, neurotrophic factors expression increase on target muscle and neurons of corresponding spinal cord. It maybe the autoregulation and may protect neuron and improve nerve regeneration.
【Abstract】 Objective To observe the distribution feature of nerve bundles in C7 nerve anterior and posterior division end. Methods The brachial plexus specimen was harvested from 1 fresh adult cadaver. After C7 nerve was confirmed, the distal end of anterior and posterior division was dissected and embedded by OCT. Then the samples were serially horizontally sliced with each 10 μm deep. After acetylcholinesterase (AChE) histochemical staining, the stain characteristics of different nerve fiber bundles were observed and amount of the nerve fiber bundles were counted under optic-microscope. At last, the imaging which were collected were three-dimensional (3-D) reconstructed by using Amira 4.1 software. Results There was no obvious difference in the stain between the anterior and posterior divisions. The running of the nerve fiber bundles were dispersive from proximal end of nerve to distal end of nerve. Nerve fiber bundles of anterior division were mainly sensor nerve fiber bundles, which located in medial side. Nerve fiber bundles of posterior division were mainly moter nerve fiber bundles, having no regularity in the distribution of nerve fiber bundles. The total number of nerve fiber bundles in distal end of anterior division was 7.85 ± 1.04, the number of motor nerve fiber bundles was 2.85 ± 0.36, and the number of sensor nerve fiber bundles was 5.13 ± 1.01. The total number of nerve fiber bundles in distal end of posterior division was 9.79 ± 1.53, the number of motor nerve fiber bundles was 6.00 ± 0.69, and the number of sensor nerve fiber bundles was 3.78 ± 0.94. There were significant differences in the numbers of motor and sensor nerve fiber bundles between anterior and posterior divisions (P lt; 0.05). The microstructure 3-D model was reconstructed based on serial slice through Amira 4.1. The intercross and recombination process of nerves bundles could be observed obviously. The nerve bundle distribution showed cross and combination. Conclusion Nerve fiber bundles of anterior division are mainly sensor nerve fiber bundles and locate in medial side. Nerve fiber bundles of posterior division are mainly motor nerve fiber bundles, which has no regularity in the distribution of nerve fiber bundles. The 3-D reconstruction can display the internal structure feature of the C7 division end.
ObjectiveTo study the feasibility of using propofol and remifentanil for reduction of shoulder joint dislocation in the conscious elderly patients, and compare its efficacy with brachial plexus block anesthesia. MethodsSeventy elderly patients (American Sociaty of Anesthesiologist physical statusⅠ-Ⅱ) who underwent shoulder dislocation reduction in our hospital between August 2011 and December 2013 were randomly divided into two groups, each group having 35 cases. Patients in group A received brachial plexus nerve block anesthesia downlink gimmick reset, while patients in group B received the use of remifentanil-propofol and lidocaine compound liquid intravenous drop infusion for anesthesia downlink manipulative reduction. After successful anesthesia, two groups of patients were treated with traction and foot pedal method (Hippocrates) to reset. We observed the two groups of patients in the process of reduction, and recorded their hemodynamic changes, reset time, discharge time, postoperative satisfaction, intra-operative memory, breathing forgotten (breathing interval was longer than 15 seconds) and visual analogue scale (VAS) scores, and then comparison was made between the two groups. ResultsPatients in both the two groups successfully completed manipulative reduction. Compared with group A, patients in group B had more stable hemodynamic indexes during the process of reduction, shorter reduction time, better anesthesia effect and higher postoperative satisfaction degree, and the differences were statistically significant (P<0.05). There was no significant difference in terms of time of leaving the operation room between the two groups (P>0.05). VAS score was higher in group A than that in group B (P<0.05). The occurrence of intra-operative memory amnesia and breathing forgotten phenomenon existed in part of the patients after operation in group B, but they did not occur in patients in group A. ConclusionRemifentanyl propofol-lidocaine compound fluid can be safely used in conscious elderly patients for shoulder joint dislocation reconstructive surgery, and it functions quickly with complete analgesia and stable hemodynamic indexes.
The report of brachial plexus injuries following radical mastectomy in patients with breast cancer was rare even though the operation was a main measure in treating with breast cancer. Nine patients treated from Oct. 1989 to Feb.1991 were summarized. The results were not ideal.
OBJECTIVE To observe the ultrastructural changes and number of satellite cells in different muscles with different denervation interval and investigate the mechanism of denervation atrophy. METHODS Muscles of different denervation interval were harvested, which were 6 biceps brachii and 6 abductor digiti minimi. The ultrastructure of the samples were observed under transmission electron microscope. The number of nucleus and satellite cells were counted to calculate the percentage content of satellite cells. RESULTS In early stage of denervation, the myofilament and sarcomere of the majority were well oriented. The nucleoli of some muscle cell nucleus were enlarged and pale. Vacuolarization was also seen in some mitochondria. There was no obvious proliferation of collagen fiber around myofibers. After denervation of half a year, rupture and disorientation of myofilament was seen. The nucleus became smaller, dark stained, and some of them were condensed. There was proliferation of fibroblasts, adipose cells and collagen fibers around myofibers. Motor endplate was not recognized one year after denervation. In the early stage of denervation, satellite cell percentage of the two muscles was relatively high. It then declined with time. One year after denervation, satellite cells were scarcely detected. Comparison of the curves for satellite cell declination in two muscles revealed that the declination of the abductor digiti minimi was faster than that of biceps brachii. Decrease of the former started 3 months after denervation, while the latter started after 6 months. CONCLUSION Disappearing of motor endplate and proliferation of collagen fibers are main factors that affect the treatment outcome in late cases. Decrease of satellite cell number is another cause. The correlation of less satellite cell in abductor digiti minimi and poorer recovery of hand intrinsic muscles indicates that increment of satellite cells in long-term denervated muscles may be one of the effective measures to improve treatment outcome.
Objective To evaluate the feasibil ity of direct anastomosis in the rat model of the brachial plexus extravertebral foramen nerve root division of C5-7. Methods Forty-eight SD rats (male or female) aging 4-6 months and weighing 250-300 g were selected to make the model of extravertebral foramen nerve root division of C5-7. The left C5-7 nerve roots, as the experimental sides, were separated to the brachial plexus nerve trunk and the transected roots were sutured to theproximal stump immediately after cutting off the brachial plexus extravertebral foramen nerve root division. The right C5-7nerve roots, as the control sides, received no operation. The general condition of rats after operation was observed. The gross observation, the histological observation and BDA nerve tracing technology were adopted to observe the wet weight of musculus biceps brachii, the cross section of biceps brachii and the spinal cord and distal nerve trunk at 3 weeks, 3 months and 6 months after operation. Results All rats survived well after operation. Claudication and unfold claw reflex were observed in the experimental sides, and the unfold claw reflex disappeared 3 months later. Comparatively, the control sides were normal. Nerve adhesion aggravated gradually and the neural stems were shriveled within 6 months after operation in the experimental sides. Comparatively, the control sides were normal. The wet weight of biceps brachii in the experimental sides and the control sides at 3 weeks, 3 months and 6 months after operation was (0.28 ± 0.12), (1.37 ± 0.33), (0.58 ± 0.10), (1.36 ± 0.35), (1.39 ± 0.31), (1.37 ± 0.38) g, respectively, indicating significant differences between two sides at 3 weeks and 3 months (P lt; 0.05), but no significant difference at 6 months (P gt; 0.05). The modified Marsland and the LFB staining of spinal cord and superior trunk of brachial plexus showed that the number of neurons, cell nuclear and Nissl body decreased and cell bodies changed from swell ing to shrinkage, dyeing nerve fibers increased, neural axone was thin and myel in sheath was sl ightly stained at each time point in experimental side. The number of motor neurons in cornu anterius medullae spinal is in the experimental side was 84.5% ± 3.2%, 74.4% ± 4.5%, 73.7% ± 3.8% of that in the control side at each time point, respectively. HE staining of biceps brachii detected thatthe muscle denaturation was very serious at 3 months after operation and then recovered. Neural tracing used BDA showed that the closer to the proximal of nerve trunk, the more obviously stained it was of myel in sheath and the more massive of axon at 6 months after operation. And there was almost no myel in and axon stained in musculocutaneous nerve. Conclusion In the rat model of brachial plexus extravertebral foramen nerve root division, the motoneuron in cornu anterius medullae spinal is necrosis rate reaches 20%-30%, and most of the residual neurons are pathologic. The regenerated fibers manifest as insufficient dynamic power and incomplete development, making no sense for the recovery of end organ function. Therefore, the exact mechanism of the recovery of biceps brachial muscle demands further study.
OBJECTIVE To explore the regularity of the change of S-100 protein in degenerative nerve after different pathological brachial plexus injuries. METHODS Eighty SD rats were randomly divided into two groups, right C5, C6 preganglionic injury, and postganglionic injury. The distribution and content of S-100 protein in distal degenerative nerve were detected after 1, 2, 3 and 6 months of injury by immunohistochemical methods. RESULTS The S-100 protein was mainly distributed along the axons. The S-100 protein positive axons of each time interval decreased after operation, with significant difference from normal nerves (P lt; 0.01). There was no statistically significant difference among 1, 2, 3 and 6 months group (P gt; 0.05). The S-100 protein stain of postganglionic group was negative. CONCLUSION In preganglionic injury, the functional expression of Schwann’s cells in the distal stump keeps at a certain level and for a certain period. Since Schwann’s cell has inductive effect on nerve regeneration, it suggests that the distal nerve stump in preganglionic injury can be used as nerve grafts.