west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Brain-computer interface" 33 results
  • Cross-session motor imagery-electroencephalography decoding with Riemannian spatial filtering and domain adaptation

    Motor imagery (MI) is a mental process that can be recognized by electroencephalography (EEG) without actual movement. It has significant research value and application potential in the field of brain-computer interface (BCI) technology. To address the challenges posed by the non-stationary nature and low signal-to-noise ratio of MI-EEG signals, this study proposed a Riemannian spatial filtering and domain adaptation (RSFDA) method for improving the accuracy and efficiency of cross-session MI-BCI classification tasks. The approach addressed the issue of inconsistent data distribution between source and target domains through a multi-module collaborative framework, which enhanced the generalization capability of cross-session MI-EEG classification models. Comparative experiments were conducted on three public datasets to evaluate RSFDA against eight existing methods in terms of classification accuracy and computational efficiency. The experimental results demonstrated that RSFDA achieved an average classification accuracy of 79.37%, outperforming the state-of-the-art deep learning method Tensor-CSPNet (76.46%) by 2.91% (P < 0.01). Furthermore, the proposed method showed significantly lower computational costs, requiring only approximately 3 minutes of average training time compared to Tensor-CSPNet’s 25 minutes, representing a reduction of 22 minutes. These findings indicate that the RSFDA method demonstrates superior performance in cross-session MI-EEG classification tasks by effectively balancing accuracy and efficiency. However, its applicability in complex transfer learning scenarios remains to be further investigated.

    Release date:2025-04-24 04:31 Export PDF Favorites Scan
  • A portable steady-state visual evoked potential brain-computer interface system for smart healthcare

    This paper realized a portable brain-computer interface (BCI) system tailored for smart healthcare. Through the decoding of steady-state visual evoked potential (SSVEP), this system can rapidly and accurately identify the intentions of subjects, thereby meeting the practical demands of daily medical scenarios. Firstly, an SSVEP stimulation interface and an electroencephalogram (EEG) signal acquisition software were designed, which enable the system to execute multi-target and multi-task operations while also incorporating data visualization functionality. Secondly, the EEG signals recorded from the occipital region were decomposed into eight sub-frequency bands using filter bank canonical correlation analysis (FBCCA). Subsequently, the similarity between each sub-band signal and the reference signals was computed to achieve efficient SSVEP decoding. Finally, 15 subjects were recruited to participate in the online evaluation of the system. The experimental results indicated that in real-world scenarios, the system achieved an average accuracy of 85.19% in identifying the intentions of the subjects, and an information transfer rate (ITR) of 37.52 bit/min. This system was awarded third prize in the Visual BCI Innovation Application Development competition at the 2024 World Robot Contest, validating its effectiveness. In conclusion, this study has developed a portable, multifunctional SSVEP online decoding system, providing an effective approach for human-computer interaction in smart healthcare.

    Release date:2025-06-23 04:09 Export PDF Favorites Scan
  • The research status and development trends of brain-computer interfaces in medicine

    Brain-computer interfaces (BCIs) have become one of the cutting-edge technologies in the world, and have been mainly applicated in medicine. In this article, we sorted out the development history and important scenarios of BCIs in medical application, analyzed the research progress, technology development, clinical transformation and product market through qualitative and quantitative analysis, and looked forward to the future trends. The results showed that the research hotspots included the processing and interpretation of electroencephalogram (EEG) signals, the development and application of machine learning algorithms, and the detection and treatment of neurological diseases. The technological key points included hardware development such as new electrodes, software development such as algorithms for EEG signal processing, and various medical applications such as rehabilitation and training in stroke patients. Currently, several invasive and non-invasive BCIs are in research. The R&D level of BCIs in China and the United State is leading the world, and have approved a number of non-invasive BCIs. In the future, BCIs will be applied to a wider range of medical fields. Related products will develop shift from a single mode to a combined mode. EEG signal acquisition devices will be miniaturized and wireless. The information flow and interaction between brain and machine will give birth to brain-machine fusion intelligence. Last but not least, the safety and ethical issues of BCIs will be taken seriously, and the relevant regulations and standards will be further improved.

    Release date:2023-08-23 02:45 Export PDF Favorites Scan
  • A review on electroencephalogram based channel selection

    The electroencephalogram (EEG) signal is the key signal carrier of the brain-computer interface (BCI) system. The EEG data collected by the whole-brain electrode arrangement is conducive to obtaining higher information representation. Personalized electrode layout, while ensuring the accuracy of EEG signal decoding, can also shorten the calibration time of BCI and has become an important research direction. This paper reviews the EEG signal channel selection methods in recent years, conducts a comparative analysis of the combined effects of different channel selection methods and different classification algorithms, obtains the commonly used channel combinations in motor imagery, P300 and other paradigms in BCI, and explains the application scenarios of the channel selection method in different paradigms are discussed, in order to provide stronger support for a more accurate and portable BCI system.

    Release date:2024-04-24 09:50 Export PDF Favorites Scan
  • Advances in brain-computer interface based on high-frequency steady-state visual evoked potential

    Steady-state visual evoked potential (SSVEP) has been widely used in the research of brain-computer interface (BCI) system in recent years. The advantages of SSVEP-BCI system include high classification accuracy, fast information transform rate and strong anti-interference ability. Most of the traditional researches induce SSVEP responses in low and middle frequency bands as control signals. However, SSVEP in this frequency band may cause visual fatigue and even induce epilepsy in subjects. In contrast, high-frequency SSVEP-BCI provides a more comfortable and natural interaction despite its lower amplitude and weaker response. Therefore, it has been widely concerned by researchers in recent years. This paper summarized and analyzed the related research of high-frequency SSVEP-BCI in the past ten years from the aspects of paradigm and algorithm. Finally, the application prospect and development direction of high-frequency SSVEP were discussed and prospected.

    Release date:2023-02-24 06:14 Export PDF Favorites Scan
  • Key technologies for intelligent brain-computer interaction based on magnetoencephalography

    Brain-computer interaction (BCI) is a transformative human-computer interaction, which aims to bypass the peripheral nerve and muscle system and directly convert the perception, imagery or thinking activities of cranial nerves into actions for further improving the quality of human life. Magnetoencephalogram (MEG) measures the magnetic field generated by the electrical activity of neurons. It has the unique advantages of non-contact measurement, high temporal and spatial resolution, and convenient preparation. It is a new BCI driving signal. MEG-BCI research has important brain science significance and potential application value. So far, few documents have elaborated the key technical issues involved in MEG-BCI. Therefore, this paper focuses on the key technologies of MEG-BCI, and details the signal acquisition technology involved in the practical MEG-BCI system, the design of the MEG-BCI experimental paradigm, the MEG signal analysis and decoding key technology, MEG-BCI neurofeedback technology and its intelligent method. Finally, this paper also discusses the existing problems and future development trends of MEG-BCI. It is hoped that this paper will provide more useful ideas for MEG-BCI innovation research.

    Release date:2022-04-24 01:17 Export PDF Favorites Scan
  • Performance evaluation of a wearable steady-state visual evoked potential based brain-computer interface in real-life scenario

    Brain-computer interface (BCI) has high application value in the field of healthcare. However, in practical clinical applications, convenience and system performance should be considered in the use of BCI. Wearable BCIs are generally with high convenience, but their performance in real-life scenario needs to be evaluated. This study proposed a wearable steady-state visual evoked potential (SSVEP)-based BCI system equipped with a small-sized electroencephalogram (EEG) collector and a high-performance training-free decoding algorithm. Ten healthy subjects participated in the test of BCI system under simplified experimental preparation. The results showed that the average classification accuracy of this BCI was 94.10% for 40 targets, and there was no significant difference compared to the dataset collected under the laboratory condition. The system achieved a maximum information transfer rate (ITR) of 115.25 bit/min with 8-channel signal and 98.49 bit/min with 4-channel signal, indicating that the 4-channel solution can be used as an option for the few-channel BCI. Overall, this wearable SSVEP-BCI can achieve good performance in real-life scenario, which helps to promote BCI technology in clinical practice.

    Release date:2025-06-23 04:09 Export PDF Favorites Scan
  • An emerging discipline: brain-computer interfaces medicine

    With the development of brain-computer interface (BCI) technology and its translational application in clinical medicine, BCI medicine has emerged, ushering in profound changes to the practice of medicine, while also bringing forth a series of ethical issues related to BCI medicine. BCI medicine is progressively emerging as a new disciplinary focus, yet to date, there has been limited literature discussing it. Therefore, this paper focuses on BCI medicine, firstly providing an overview of the main potential medical applications of BCI technology. It then defines the discipline, outlines its objectives, methodologies, potential efficacy, and associated translational medical research. Additionally, it discusses the ethics associated with BCI medicine, and introduces the standardized operational procedures for BCI medical applications and the methods for evaluating the efficacy of BCI medical applications. Finally, it anticipates the challenges and future directions of BCI medicine. In the future, BCI medicine may become a new academic discipline or major in higher education. In summary, this article is hoped to provide thoughts and references for the development of the discipline of BCI medicine.

    Release date:2024-10-22 02:33 Export PDF Favorites Scan
  • A deep transfer learning approach for cross-subject recognition of mental tasks based on functional near-infrared spectroscopy

    In the field of brain-computer interfaces (BCIs) based on functional near-infrared spectroscopy (fNIRS), traditional subject-specific decoding methods suffer from the limitations of long calibration time and low cross-subject generalizability, which restricts the promotion and application of BCI systems in daily life and clinic. To address the above dilemma, this study proposes a novel deep transfer learning approach that combines the revised inception-residual network (rIRN) model and the model-based transfer learning (TL) strategy, referred to as TL-rIRN. This study performed cross-subject recognition experiments on mental arithmetic (MA) and mental singing (MS) tasks to validate the effectiveness and superiority of the TL-rIRN approach. The results show that the TL-rIRN significantly shortens the calibration time, reduces the training time of the target model and the consumption of computational resources, and dramatically enhances the cross-subject decoding performance compared to subject-specific decoding methods and other deep transfer learning methods. To sum up, this study provides a basis for the selection of cross-subject, cross-task, and real-time decoding algorithms for fNIRS-BCI systems, which has potential applications in constructing a convenient and universal BCI system.

    Release date:2024-10-22 02:33 Export PDF Favorites Scan
  • Visual object detection system based on augmented reality and steady-state visual evoked potential

    This study investigates a brain-computer interface (BCI) system based on an augmented reality (AR) environment and steady-state visual evoked potentials (SSVEP). The system is designed to facilitate the selection of real-world objects through visual gaze in real-life scenarios. By integrating object detection technology and AR technology, the system augmented real objects with visual enhancements, providing users with visual stimuli that induced corresponding brain signals. SSVEP technology was then utilized to interpret these brain signals and identify the objects that users focused on. Additionally, an adaptive dynamic time-window-based filter bank canonical correlation analysis was employed to rapidly parse the subjects’ brain signals. Experimental results indicated that the system could effectively recognize SSVEP signals, achieving an average accuracy rate of 90.6% in visual target identification. This system extends the application of SSVEP signals to real-life scenarios, demonstrating feasibility and efficacy in assisting individuals with mobility impairments and physical disabilities in object selection tasks.

    Release date:2024-10-22 02:33 Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content