west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Deep learning model" 2 results
  • Efficacy and safety of computer-aided detection(CADe) in colonoscopy for colorectal neoplasia detection: a meta-analysis

    ObjectiveTo systematically evaluate the efficacy and safety of computer-aided detection (CADe) and conventional colonoscopy in identifying colorectal adenomas and polyps. MethodsThe PubMed, Embase, Cochrane Library, Web of Science, WanFang Data, VIP, and CNKI databases were electronically searched to collect randomized controlled trials (RCTs) comparing the effectiveness and safety of CADe assisted colonoscopy and conventional colonoscopy in detecting colorectal tumors from 2014 to April 2023. Two reviewers independently screened the literature, extracted data, and evaluated the risk of bias of the included literature. Meta-analysis was performed by RevMan 5.3 software. ResultsA total of 9 RCTs were included, with a total of 6 393 patients. Compared with conventional colonoscopy, the CADe system significantly improved the adenoma detection rate (ADR) (RR=1.22, 95%CI 1.10 to 1.35, P<0.01) and polyp detection rate (PDR) (RR=1.19, 95%CI 1.04 to 1.36, P=0.01). It also reduced the missed diagnosis rate (AMR) of adenomas (RR=0.48, 95%CI 0.34 to 0.67, P<0.01) and the missed diagnosis rate (PMR) of polyps (RR=0.39, 95%CI 0.25 to 0.59, P<0.01). The PDR of proximal polyps significantly increased, while the PDR of ≤5 mm polyps slightly increased, but the PDR of >10mm and pedunculated polyps significantly decreased. The AMR of the cecum, transverse colon, descending colon, and sigmoid colon was significantly reduced. There was no statistically significant difference in the withdrawal time between the two groups. Conclusion The CADe system can increase the detection rate of adenomas and polyps, and reduce the missed diagnosis rate. The detection rate of polyps is related to their location, size, and shape, while the missed diagnosis rate of adenomas is related to their location.

    Release date:2024-11-12 03:38 Export PDF Favorites Scan
  • A method for emotion transition recognition using cross-modal feature fusion and global perception

    Current studies on electroencephalogram (EEG) emotion recognition primarily concentrate on discrete stimulus paradigms under controlled laboratory settings, which cannot adequately represent the dynamic transition characteristics of emotional states during multi-context interactions. To address this issue, this paper proposes a novel method for emotion transition recognition that leverages a cross-modal feature fusion and global perception network (CFGPN). Firstly, an experimental paradigm encompassing six types of emotion transition scenarios was designed, and EEG and eye movement data were simultaneously collected from 20 participants, each annotated with dynamic continuous emotion labels. Subsequently, deep canonical correlation analysis integrated with a cross-modal attention mechanism was employed to fuse features from EEG and eye movement signals, resulting in multimodal feature vectors enriched with highly discriminative emotional information. These vectors are then input into a parallel hybrid architecture that combines convolutional neural networks (CNNs) and Transformers. The CNN is employed to capture local time-series features, whereas the Transformer leverages its robust global perception capabilities to effectively model long-range temporal dependencies, enabling accurate dynamic emotion transition recognition. The results demonstrate that the proposed method achieves the lowest mean square error in both valence and arousal recognition tasks on the dynamic emotion transition dataset and a classic multimodal emotion dataset. It exhibits superior recognition accuracy and stability when compared with five existing unimodal and six multimodal deep learning models. The approach enhances both adaptability and robustness in recognizing emotional state transitions in real-world scenarios, showing promising potential for applications in the field of biomedical engineering.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content