Fundus autofluorescence (FAF) relies primarily on the presence of accumulated lipofuscin in the retinal pigment epithelium (PRE) cells. It has emerged as a valuable tool to detect and evaluate the viability and structural changes of the RPE in live. As a noninvasive, repeatable, simple and efficient means of detection, FAF imaging can provide information of RPE structure and function to assistant the diagnosis of many retinal diseases with other conventional fundus imaging technologies. With quantitative analysis and complementary analysis with other fundus imaging technologies, the FAF features of different retinal diseases will be further understood. This knowledge will not only extend the reasonable and unique clinical applications of FAF, but also will contribute to the understanding the pathogenesis and improving the treatment of many retinal diseases.
The prevalence of diabetes mellitus in adults of China has reached 12.8%. Diabetic retinopathy (DR) accounts for approximately 1/4-1/3 of the diabetic population. Several millions of people are estimated suffering the advanced stage of DR, including severe non-proliferative DR (NPDR), proliferative DR (PDR) and diabetic macular edema (DME), which seriously threat to the patients’ vision. On the basis of systematic prevention and control of diabetes and its complications, prevention of the moderate and high-risk NPDR from progressing to the advanced stage is the final efforts to avoid diabetic blindness. The implementation of the DR severity scale is helpful to assess the severity, risk factors for its progression, treatment efficacy and prognosis. In the eyes with vision-threatening DR, early application of biotherapy of anti-vascular endothelial growth factor can improve DR with regression of retinal neovascularization, but whether it is possible to induce capillary re-canalization in the non-perfusion area needs more investigation. Laser photocoagulation remains the mainstay treatment for non-center-involved DME and PDR.
The knowledge of uveitis of Chinese eye doctors has been improved in general. While the usage of glucocorticoid agents was more reasonable, other non-corticoid immunosuppressant get more attention recently. The usage of antibiotics also has being reduced gradually. The international impact of our uveitis research has been enhanced. However there are still some problems, such as big difference between different regions of uveitis research, still many misunderstandings on the treatment of uveitis complications, and the reasonable evaluation of intravitreal injection with glucocorticoid needs emphasis. In China Behcetprime;s disease and Vogt-Koyangi-Harada syndrome are the most common uveitis subtypes which can lead to blindness,but some rare subtypes of uveitis are also increasing such as syphilitic uveitis, acquired immune deficiency syndrome(AIDS),mycotic endophthalmitis and masquerade syndrome. In the future we need cooperative studies between multicenters to investigate the effectiveness of different treatment strategies for Behcetprime;s disease and Vogt-Koyangi-Harada syndrome, and to optimizing the best therapeutic schedule. We also need to pay more attentions to the clinical features of those uveitis subtypes which increased recently;and to investigate the prevention and therapeutic effect of induction of immune tolerance to uveitis.
Most fundus diseases leading to irreversible blindness are associated with genetic variations. Some sequence changes directly cause retinal diseases while others lead to a higher susceptibility to environmental insults common in daily life. Studies of genes related to fundus diseases will lead to a revolutionary change in the prevention and treatment of irreversible blindness. Application of high throughput nextgeneration sequencing and exome capture techniques will greatly enhance our ability to elucidate genes responsible for fundus diseases. With such technical and analytical advances, we are likely to see continuing and accelerating progress in the genetic study of fundus diseases, particularly in those fields requiring collaborative study of common fundus diseases using large cohorts of samples. The translational clinical application of understanding about these newly identified genes responsible for fundus diseases is also increasing in promise. Thus, strengthening current genetic studies of fundus diseases in both of these areas will make a valuable contribution to the prevention and treatment of blindness in both the near and especially the distant future.
With the rapid development of ophthalmic imaging methods, there are many ways of examination in the diagnosis and treatment of fundus diseases, such as FFA, ICGA, FAF, OCT and emerging blood vessels by OCT angiography in recent years. Multi-model image can understand the changes of anatomical structure and function of different levels and parts of the fundus from different aspects. A variety of imaging examinations are combined and complemented each other, which makes us have a further understanding of the location and pathological changes of many fundus diseases. But at the same time, the emergence of multi-modal images also brings a series of problems. How to standardize the use of multi-modal imaging platform to better serve the clinic is a problem that ophthalmologists need to understand.
Surgical treatments for macular hole and rhegmatogenous retinal detachment are the most common and principle procedures for vitreoretinal specialists. The surgical success rate reached 95.0% and above for vitrectomy, macular surgeries with ILM peeling, or local/total scleral buckling. However, the postoperative visual function recovery is nowhere near good enough. Specialists must pay more attention to the visual function recovery of those patients. Postoperative macular anatomical and functional rehabilitation for macular hole and scleral buckling procedures need a long period of time. At present, the postoperative visual acuity for macular hole depends on many factors, such as macular hole closure conditions, surgical procedures, microsurgical invasive ways, skills of membrane peeling, usage of dye staining, and tamponade material choice. It also depends on residual subretinal fluid under macular area for patients received scleral buckling. It is important for us to investigate these factors affecting recovery of macular anatomy and function, and thus develop some drugs to improve the macular function recovery.
Anti-vascular endothelial growth factor (VEGF) drugs have become the firstline medications for the treatment of choroidal neovascularization (CNV). Its efficacy and safety have been confirmed by evidence-based medicine and a large number of clinical studies. However there are several issues need to be discussed before reaching a consensus for the clinical application of anti-VEGF drugs. These issues include, but not limited to the individual treatment regimen for different CNV lesions, the best anti-VEGF drug regimen, the indications and schemes of combination therapy, the factors affecting the efficacy, the potential risks of systemic and local deliveries. How to establish a reasonable personalized regimen of anti-VEGF drugs is the 1st issue need to be explored. Ranibizumab will come into China market soon. We need utilize the existing evidence-based medical research findings; take our advantages of rich resources of patients to investigate those issues to further promote the anti-VEGF applications in China.
Proliferative diabetic retinopathy (PDR) is one of the most common cause of severe sight impairment in people with diabetes. When PDR develops to a severe stage, vitreoretinal surgery is needed to prevent its aggravation. The surgery for PDR is complicated and difficult. By deeply understanding the pathological mechanism and development law of PDR, and reasonably using various surgical techniques, assisted by emerging surgical equipment and drugs, the surgical efficacy of PDR can be continuously improved, so as to help patients improve or even restore visual function to a greater extent.
Diabetic macular edema (DME) is a common ocular complication of diabetes patients. It mainly involve macular which is closely related with visual function, thus DME is one of the major reasons causing visual impairment or blindness for diabetes patients. How to reduce the visual damage of DME is always a big challenge in the ophthalmic practice. In the past three decades, there are tremendous developments in DME treatments, from laser photocoagulation, antiinflammation drugs to antivascular endothelial growth factor therapy. However, the mechanism of DME development is not yet completely clear; every existing treatment has its own advantages and weaknesses. Therefore DME treatment still challenges us to explore further to reduce the DME damages.
With the renovations of modern retinal imaging modality, such as video ophthalmoscopy, fundus photography, fundus fluorescein angiograph and spectral domain optical coherence tomography, it is possible to get high resolution and reproducible in vivo imaging of retina from neonates to improve the diagnosis and treatment of pediatric retinal disease. Now we have a better tool to investigate the early development of human retina, the pathogenesis and progression of pediatric retinal diseases, and to monitor the treatment efficacy and prognosis of these diseases. To expand these technologies in the diagnosis and treatment of pediatric retinal disease, we need simple, safe, comprehensive and objective applications which can only be achieved through multi-disciplinary cooperation.