Objective To conduct a systematic review on the Electrocardiogram (ECG) changes in the workers exposed to high temperatures by means of meta-analysis.Methods The retrospective cohort studies on the relationship between high temperature and ECG abnormalities published from 1990 to May 2009 were searched in CNKI, VIP, WanFang database and CBM database. The literatures meeting the inclusive criteria were selected, the quality was assessed, the data were extracted, and the meta-analyses were conducted with RevMan 4.2.2 software. Results A total of 20 studies were included. The results of meta-analyses showed: the ECG abnormality rate of the high-temperature group was obviously superior to that of the control group with significant difference (OR=2.76, 95%CI 2.37 to 3.20, Plt;0.000 01). The high-temperature severely affected left ventricular hypertrophy (OR=3.49, 95%CI 2.83 to 4.31, Plt;0.000 01), sinus bradycardia (OR=2.83, 95%CI 2.33 to 3.43, Plt;0.000 01), and changes in ST-T segment (OR=2.63, 95%CI 1.48 to 4.68, P=0.000 10), which indicated that the abnormal changes of ECG, such as left ventricular hypertrophy, sinus tachycardia, sinus bradycardia, and changes in ST-T segment could be the sensitive indexes to monitor cardiovascular disease of workers exposed to high-temperature. Conclusion The incidence of ECG abnormalities caused by high-temperature operation is obviously superior to that of the control group, so it is required to strengthen the health monitoring and labor protection for the workers exposed to high temperature.
ObjectiveTo discuss the safety of dental extraction with electrocardiogram (ECG) monitoring for cardiovascular patients. MethodsWe summarized and analyzed the clinical data of 933 cases of dental extraction with ECG monitoring from May 2010 to May 2011. Analysis of the change of heart rate and blood pressure in the process of dental extraction was also carried out. ResultsAll patients underwent the tooth extraction successfully. The heart rate and blood pressure increased after local anesthesia and in the process of tooth extraction without any accident. ConclusionUnder the premise of strict control of indications, dental extraction with the implementation of ECG monitoring has a very high security for patients with cardiovascular diseases or other systemic disorders.
Sudden cardiac arrest (SCA) is a lethal cardiac arrhythmia that poses a serious threat to human life and health. However, clinical records of sudden cardiac death (SCD) electrocardiogram (ECG) data are extremely limited. This paper proposes an early prediction and classification algorithm for SCA based on deep transfer learning. With limited ECG data, it extracts heart rate variability features before the onset of SCA and utilizes a lightweight convolutional neural network model for pre-training and fine-tuning in two stages of deep transfer learning. This achieves early classification, recognition and prediction of high-risk ECG signals for SCA by neural network models. Based on 16 788 30-second heart rate feature segments from 20 SCA patients and 18 sinus rhythm patients in the international publicly available ECG database, the algorithm performance evaluation through ten-fold cross-validation shows that the average accuracy (Acc), sensitivity (Sen), and specificity (Spe) for predicting the onset of SCA in the 30 minutes prior to the event are 91.79%, 87.00%, and 96.63%, respectively. The average estimation accuracy for different patients reaches 96.58%. Compared to traditional machine learning algorithms reported in existing literatures, the method proposed in this paper helps address the requirement of large training datasets for deep learning models and enables early and accurate detection and identification of high-risk ECG signs before the onset of SCA.
In the diagnosis of cardiovascular diseases, the analysis of electrocardiogram (ECG) signals has always played a crucial role. At present, how to effectively identify abnormal heart beats by algorithms is still a difficult task in the field of ECG signal analysis. Based on this, a classification model that automatically identifies abnormal heartbeats based on deep residual network (ResNet) and self-attention mechanism was proposed. Firstly, this paper designed an 18-layer convolutional neural network (CNN) based on the residual structure, which helped model fully extract the local features. Then, the bi-directional gated recurrent unit (BiGRU) was used to explore the temporal correlation for further obtaining the temporal features. Finally, the self-attention mechanism was built to weight important information and enhance model's ability to extract important features, which helped model achieve higher classification accuracy. In addition, in order to mitigate the interference on classification performance due to data imbalance, the study utilized multiple approaches for data augmentation. The experimental data in this study came from the arrhythmia database constructed by MIT and Beth Israel Hospital (MIT-BIH), and the final results showed that the proposed model achieved an overall accuracy of 98.33% on the original dataset and 99.12% on the optimized dataset, which demonstrated that the proposed model can achieve good performance in ECG signal classification, and possessed potential value for application to portable ECG detection devices.
The pace of modern life is accelerating, the pressure of life is gradually increasing, and the long-term accumulation of mental fatigue poses a threat to health. By analyzing physiological signals and parameters, this paper proposes a method that can identify the state of mental fatigue, which helps to maintain a healthy life. The method proposed in this paper is a new recognition method of psychological fatigue state of electrocardiogram signals based on convolutional neural network and long short-term memory. Firstly, the convolution layer of one-dimensional convolutional neural network model is used to extract local features, the key information is extracted through pooling layer, and some redundant data is removed. Then, the extracted features are used as input to the long short-term memory model to further fuse the ECG features. Finally, by integrating the key information through the full connection layer, the accurate recognition of mental fatigue state is successfully realized. The results show that compared with traditional machine learning algorithms, the proposed method significantly improves the accuracy of mental fatigue recognition to 96.3%, which provides a reliable basis for the early warning and evaluation of mental fatigue.
ObjectiveTo find out the influencing factors of electrocardiogram (ECG) monitor configuration decision in surgical nursing units and form a scientific configuration standard, so as to provide a basis for the reasonable configuration of ECG monitors.MethodsFrom May to June 2018, the indexes and weights affecting the configuration of ECG monitors in surgical nursing units of a large public hospital were determined by interview survey method and analytic hierarchy process.ResultsThe influencing factors for configuration of ECG monitors in surgical nursing units were the number of operations, number of rescues, number of emergencies, number of deaths, and number of patients transferred to and out of intensive care unit, and the weights were 0.459 7, 0.224 9, 0.155 3, 0.111 2, and 0.049 0, respectively. The classification of nursing units was taken as plan, and the configuration standard of ECG monitors was established.ConclusionThe configuration model of ECG monitors in surgical nursing units based on analytic hierarchy process realizes the combination of qualitative and quantitative analysis, which provides scientific and reasonable reference for the configuration of ECG monitors.
ObjectiveTo explore the actual effect of “graphic-sequenced memory method” in teaching electrocardiogram (ECG). MethodsOne hundred students were randomly divided into a traditional teaching group (n=50) and an innovative teaching group (n=50) in May, 2014. Teachers in the traditional teaching group utilized the traditional teaching outline, and teachers in the innovative teaching group received training in the new teaching method and syllabus. All students took an examination in the final semester by analyzing 20 ECGs from real clinical cases and gave their ECG reports. ResultsThe average ECG reading time was (32.0±4.8) minutes for the traditional teaching group and (18.0±3.6) minutes for the innovative teaching group. The average ECG accuracy results were (43.0±5.2)% for the traditional teaching group and (77.0±9.6)% for the innovative teaching group. ConclusionsECG learning is an important branch of the cardiac discipline, but ECG’s mechanisms are intricate and the learning content scattered. Textbooks tend to make students feel confused due to the restrictions of the length and format of the syllabi, and there are many other limitations. Graphic-sequenced memory method is a useful method which can be fully used in ECG teaching.
Objective To analyze the electrocardiogram (ECG) and troponin (cTnI) in patients with acute coronary syndrome (ACS), so as to assess their value in diagnosing the extent of vascular lesions. Methods The results of ECG, cTnI and coronary angiography (CAG) were analyzed in 37 patients with ACS. Chi-square test and a logistic regression model were used for statistical analysis. Results In patients with positive ECG or cTnI, the results of Chi-square test showed that the incidences of coronary occlusion (P=0.016, 0.003, respectively) and coronary stenosis (P=0.121, 0.013, respectively) were significantly higher than for those with negative ECG or cTnI. The results of logistic regression analysis indicated that only cTnI was significantly correlated with coronary occlusion (P=0.013) and moderate to severe coronary stenosis (P=0.021). ECG has significant consistency with cTnI (Kappa=0.617, Plt;0.001). Conclusion Both ECG and the qual itative cTnI test can reflect the extent of vascular lesions in patients with ACS.
Cardiac three-dimensional electrophysiological labeling technology is the prerequisite and foundation of atrial fibrillation (AF) ablation surgery, and invasive labeling is the current clinical method, but there are many shortcomings such as large trauma, long procedure duration, and low success rate. In recent years, because of its non-invasive and convenient characteristics, ex vivo labeling has become a new direction for the development of electrophysiological labeling technology. With the rapid development of computer hardware and software as well as the accumulation of clinical database, the application of deep learning technology in electrocardiogram (ECG) data is becoming more extensive and has made great progress, which provides new ideas for the research of ex vivo cardiac mapping and intelligent labeling of AF substrates. This paper reviewed the research progress in the fields of ECG forward problem, ECG inverse problem, and the application of deep learning in AF labeling, discussed the problems of ex vivo intelligent labeling of AF substrates and the possible approaches to solve them, prospected the challenges and future directions for ex vivo cardiac electrophysiology labeling.
Electrocardiogram (ECG) monitoring owns important clinical value in diagnosis, prevention and rehabilitation of cardiovascular disease (CVD). With the rapid development of Internet of Things (IoT), big data, cloud computing, artificial intelligence (AI) and other advanced technologies, wearable ECG is playing an increasingly important role. With the aging process of the population, it is more and more urgent to upgrade the diagnostic mode of CVD. Using AI technology to assist the clinical analysis of long-term ECGs, and thus to improve the ability of early detection and prediction of CVD has become an important direction. Intelligent wearable ECG monitoring needs the collaboration between edge and cloud computing. Meanwhile, the clarity of medical scene is conducive for the precise implementation of wearable ECG monitoring. This paper first summarized the progress of AI-related ECG studies and the current technical orientation. Then three cases were depicted to illustrate how the AI in wearable ECG cooperate with the clinic. Finally, we demonstrated the two core issues—the reliability and worth of AI-related ECG technology and prospected the future opportunities and challenges.