The electroencephalogram (EEG) signal is a general reflection of the neurophysiological activity of the brain, which has the advantages of being safe, efficient, real-time and dynamic. With the development and advancement of machine learning research, automatic diagnosis of Alzheimer’s diseases based on deep learning is becoming a research hotspot. Started from feedforward neural networks, this paper compared and analysed the structural properties of neural network models such as recurrent neural networks, convolutional neural networks and deep belief networks and their performance in the diagnosis of Alzheimer’s disease. It also discussed the possible challenges and research trends of this research in the future, expecting to provide a valuable reference for the clinical application of neural networks in the EEG diagnosis of Alzheimer’s disease.
Emotion recognition refers to the process of determining and identifying an individual's current emotional state by analyzing various signals such as voice, facial expressions, and physiological indicators etc. Using electroencephalogram (EEG) signals and virtual reality (VR) technology for emotion recognition research helps to better understand human emotional changes, enabling applications in areas such as psychological therapy, education, and training to enhance people’s quality of life. However, there is a lack of comprehensive review literature summarizing the combined researches of EEG signals and VR environments for emotion recognition. Therefore, this paper summarizes and synthesizes relevant research from the past five years. Firstly, it introduces the relevant theories of VR and EEG signal emotion recognition. Secondly, it focuses on the analysis of emotion induction, feature extraction, and classification methods in emotion recognition using EEG signals within VR environments. The article concludes by summarizing the research’s application directions and providing an outlook on future development trends, aiming to serve as a reference for researchers in related fields.
ObjectiveThe purpose of the research is to study the distribution and early warning of electroencephalogram (EEG) in acute mountain sickness (AMS). MethodsA total of 280 healthy young men were recruited from September 2016 to October 2016. The basic data were collected by the centralized flow method, the general situation of the division of the investigators after the training, the Lewis Lake score, the computer self-rating anxiety scale and depression scale, and the collection of EEG. Follow up in three months. Results94 of the patients with AMS, morbidity is 33%, 21 (22.34%) of the patients are moderate to severe, 73 (77.66%) are mild, morbidity is 26.67%. The abnormal detection rate of electrogram was 7.9% (22/280), which were mild EEG, normal EEG abnormal rate was 8.6% (16/186), abnormal detection rate of mild AMS was 4.1% (3/73), and the abnormal detection rate was 14.3% (3/21) in the medium / heavy AMS. The latter was significantly different from the previous (P < 0.05). Three months follow-up of this group of patients with 0 case of high altitude disease. Conclusions The EEG in AMS is mainly a rhythm irregular, unstable, poor amplitude modulation; or two hemisphere volatility difference of more than 50% or slightly increased activity. The result is statistically significant, suggesting that EEG distributions has possible early warning of AMS.
Brain age prediction, as a significant approach for assessing brain health and early diagnosing neurodegenerative diseases, has garnered widespread attention in recent years. Electroencephalogram (EEG), an non-invasive, convenient, and cost-effective neurophysiological signal, offers unique advantages for brain age prediction due to its high temporal resolution and strong correlation with brain functional states. Despite substantial progress in enhancing prediction accuracy and generalizability, challenges remain in data quality and model interpretability. This review comprehensively examined the advancements in EEG-based brain age prediction, detailing key aspects of data preprocessing, feature extraction, model construction, and result evaluation. It also summarized the current applications of machine learning and deep learning methods in this field, analyzed existing issues, and explored future directions to promote the widespread application of EEG-based brain age prediction in both clinical and research settings.
Emotion is a crucial physiological attribute in humans, and emotion recognition technology can significantly assist individuals in self-awareness. Addressing the challenge of significant differences in electroencephalogram (EEG) signals among different subjects, we introduce a novel mechanism in the traditional whale optimization algorithm (WOA) to expedite the optimization and convergence of the algorithm. Furthermore, the improved whale optimization algorithm (IWOA) was applied to search for the optimal training solution in the extreme learning machine (ELM) model, encompassing the best feature set, training parameters, and EEG channels. By testing 24 common EEG emotion features, we concluded that optimal EEG emotion features exhibited a certain level of specificity while also demonstrating some commonality among subjects. The proposed method achieved an average recognition accuracy of 92.19% in EEG emotion recognition, significantly reducing the manual tuning workload and offering higher accuracy with shorter training times compared to the control method. It outperformed existing methods, providing a superior performance and introducing a novel perspective for decoding EEG signals, thereby contributing to the field of emotion research from EEG signal.
Fear emotion is a typical negative emotion that is commonly present in daily life and significantly influences human behavior. A deeper understanding of the mechanisms underlying negative emotions contributes to the improvement of diagnosing and treating disorders related to negative emotions. However, the neural mechanisms of the brain when faced with fearful emotional stimuli remain unclear. To this end, this study further combined electroencephalogram (EEG) source analysis and cortical brain network construction based on early posterior negativity (EPN) analysis to explore the differences in brain information processing mechanisms under fearful and neutral emotional picture stimuli from a spatiotemporal perspective. The results revealed that neutral emotional stimuli could elicit higher EPN amplitudes compared to fearful stimuli. Further source analysis of EEG data containing EPN components revealed significant differences in brain cortical activation areas between fearful and neutral emotional stimuli. Subsequently, more functional connections were observed in the brain network in the alpha frequency band for fearful emotions compared to neutral emotions. By quantifying brain network properties, we found that the average node degree and average clustering coefficient under fearful emotional stimuli were significantly larger compared to neutral emotions. These results indicate that combining EPN analysis with EEG source component and brain network analysis helps to explore brain functional modulation in the processing of fearful emotions with higher spatiotemporal resolution, providing a new perspective on the neural mechanisms of negative emotions.
Objective To understand the status quo of medical staffs engaged in epilepsy and EEG in Shanxi Province, analyze the existing problems, and summarize the improvement and development direction of epilepsy and EEG in Shanxi Province. Methods A questionnaire survey was conducted among medical staff of epilepsy and electroencephalogram specialty in public hospitals at or above county level in whole province and municipalities. Results ① Generally speaking, there are 17 males and 473 females in this study, with an average age of 38.7 years, the youngest was 23 years-old and the oldest was 70 years-old; ② The regional distribution has a tendency of decrease from Taiyuan in Shanxi Province to the remote areas of southeast, northwest and northwest China, and the epilepsy treatment in some poverty-stricken areas have not even been carried out; ③ The shortest time of working is 3 months and the longest is more than 40 years. The proportion of junior collage students, undergraduates, masters and doctors is 24%, 50%, 25% and 1% respectivel. The professional titles of primary, medium-level, vice-senior and senior are 24%, 39%, 26% and 11% respectively. Conclusion The number of medical workers engaged in EEG specialty in Shanxi Province is insufficient, the regional development is not balanced, and the number of junior and medium-level professional titles is large. We can formulate a mobile policy to encourage experienced medical personnel to communicate with weak areas, so as to improve the overall level of epilepsy and EEG professional development in Shanxi Province.
Due to the high complexity and subject variability of motor imagery electroencephalogram, its decoding is limited by the inadequate accuracy of traditional recognition models. To resolve this problem, a recognition model for motor imagery electroencephalogram based on flicker noise spectrum (FNS) and weighted filter bank common spatial pattern (wFBCSP) was proposed. First, the FNS method was used to analyze the motor imagery electroencephalogram. Using the second derivative moment as structure function, the ensued precursor time series were generated by using a sliding window strategy, so that hidden dynamic information of transition phase could be captured. Then, based on the characteristic of signal frequency band, the feature of the transition phase precursor time series and reaction phase series were extracted by wFBCSP, generating features representing relevant transition and reaction phase. To make the selected features adapt to subject variability and realize better generalization, algorithm of minimum redundancy maximum relevance was further used to select features. Finally, support vector machine as the classifier was used for the classification. In the motor imagery electroencephalogram recognition, the method proposed in this study yielded an average accuracy of 86.34%, which is higher than the comparison methods. Thus, our proposed method provides a new idea for decoding motor imagery electroencephalogram.
The research shows that personality assessment can be achieved by regression model based on electroencephalogram (EEG). Most of existing researches use event-related potential or power spectral density for personality assessment, which can only represent the brain information of a single region. But some research shows that human cognition is more dependent on the interaction of brain regions. In addition, due to the distribution difference of EEG features among subjects, the trained regression model can not get accurate results of cross subject personality assessment. In order to solve the problem, this research proposes a personality assessment method based on EEG functional connectivity and domain adaption. This research collected EEG data from 45 normal people under different emotional pictures (positive, negative and neutral). Firstly, the coherence of 59 channels in 5 frequency bands was taken as the original feature set. Then the feature-based domain adaptation was used to map the feature to a new feature space. It can reduce the distribution difference between training and test set in the new feature space, so as to reduce the distribution difference between subjects. Finally, the support vector regression model was trained and tested based on the transformed feature set by leave-one-out cross-validation. What’s more, this paper compared the methods used in previous researches. The results showed that the method proposed in this paper improved the performance of regression model and obtained better personality assessment results. This research provides a new method for personality assessment.
As an emerging non-invasive brain stimulation technique, transcranial direct current stimulation (tDCS) has received increasing attention in the field of stroke disease rehabilitation. However, its efficacy needs to be further studied. The tDCS has three stimulation modes: bipolar-stimulation mode, anode-stimulation mode and cathode-stimulation mode. Nineteen stroke patients were included in this research (10 with left-hemisphere lesion and 9 with right). Resting electroencephalogram (EEG) signals were collected from subjects before and after bipolar-stimulation, anodal-stimulation, cathodal-stimulation, and pseudo-stimulation, with pseudo-stimulation serving as the control group. The changes of multi-scale intrinsic fuzzy entropy (MIFE) of EEG signals before and after stimulation were compared. The results revealed that MIFE was significantly greater in the frontal and central regions after bipolar-stimulation (P < 0.05), in the left central region after anodal-stimulation (P < 0.05), and in the frontal and right central regions after cathodal-stimulation (P < 0.05) in patients with left-hemisphere lesions. MIFE was significantly greater in the frontal, central and parieto-occipital joint regions after bipolar-stimulation (P < 0.05), in the left frontal and right central regions after anodal- stimulation (P < 0.05), and in the central and right occipital regions after cathodal-stimulation (P < 0.05) in patients with right-hemisphere lesions. However, the difference before and after pseudo-stimulation was not statistically significant (P > 0.05). The results of this paper showed that the bipolar stimulation pattern affected the largest range of brain areas, and it might provide a reference for the clinical study of rehabilitation after stroke.