Cardiovascular disease (CVD) is one of the leading causes of death worldwide. Heart sound classification plays a key role in the early detection of CVD. The difference between normal and abnormal heart sounds is not obvious. In this paper, in order to improve the accuracy of the heart sound classification model, we propose a heart sound feature extraction method based on bispectral analysis and combine it with convolutional neural network (CNN) to classify heart sounds. The model can effectively suppress Gaussian noise by using bispectral analysis and can effectively extract the features of heart sound signals without relying on the accurate segmentation of heart sound signals. At the same time, the model combines with the strong classification performance of convolutional neural network and finally achieves the accurate classification of heart sound. According to the experimental results, the proposed algorithm achieves 0.910, 0.884 and 0.940 in terms of accuracy, sensitivity and specificity under the same data and experimental conditions, respectively. Compared with other heart sound classification algorithms, the proposed algorithm shows a significant improvement and strong robustness and generalization ability, so it is expected to be applied to the auxiliary detection of congenital heart disease.
Heart sound signal is a kind of physiological signal with nonlinear and nonstationary features. In order to improve the accuracy and efficiency of the phonocardiogram (PCG) classification, a new method was proposed by means of support vector machine (SVM) in which the complete ensemble empirical modal decomposition with adaptive noise (CEEMDAN) permutation entropy was as the eigenvector of heart sound signal. Firstly, the PCG was decomposed by CEEMDAN into a number of intrinsic mode functions (IMFs) from high to low frequency. Secondly, the IMFs were sifted according to the correlation coefficient, energy factor and signal-to-noise ratio. Then the instantaneous frequency was extracted by Hilbert transform, and its permutation entropy was constituted into eigenvector. Finally, the accuracy of the method was verified by using a hundred PCG samples selected from the 2016 PhysioNet/CinC Challenge. The results showed that the accuracy rate of the proposed method could reach up to 87%. In comparison with the traditional EMD and EEMD permutation entropy methods, the accuracy rate was increased by 18%–24%, which demonstrates the efficiency of the proposed method.
Heart sounds are critical for early detection of cardiovascular diseases, yet existing studies mostly focus on traditional signal segmentation, feature extraction, and shallow classifiers, which often fail to sufficiently capture the dynamic and nonlinear characteristics of heart sounds, limit recognition of complex heart sound patterns, and are sensitive to data imbalance, resulting in poor classification performance. To address these limitations, this study proposes a novel heart sound classification method that integrates improved Mel-frequency cepstral coefficients (MFCC) for feature extraction with a convolutional neural network (CNN) and a deep Transformer model. In the preprocessing stage, a Butterworth filter is applied for denoising, and continuous heart sound signals are directly processed without segmenting the cardiac cycles, allowing the improved MFCC features to better capture dynamic characteristics. These features are then fed into a CNN for feature learning, followed by global average pooling (GAP) to reduce model complexity and mitigate overfitting. Lastly, a deep Transformer module is employed to further extract and fuse features, completing the heart sound classification. To handle data imbalance, the model uses focal loss as the objective function. Experiments on two public datasets demonstrate that the proposed method performs effectively in both binary and multi-class classification tasks. This approach enables efficient classification of continuous heart sound signals, provides a reference methodology for future heart sound research for disease classification, and supports the development of wearable devices and home monitoring systems.