Objective To study the advances in microcirculation after islets of Langerhans transplantation (ILT). Methods The literature in the recent years on the study of the relationship between ILT and microcirculation was reviewed. Results The process of angiogenesis and revascularization of the islet grafts was in progress within 1 week after transplantation, and was completed within 10-14 days after transplantation, exhibiting a microangioarchitecture similar to pancreatic islets in situ. The sequence of vascular intraislet cellular perfusion was from β cells outward to α-and δ-cell cortex, with the majority of α cells perfused before the majority of δ cells. Freely transplanted islet grafts were revascularized from the hostderived microvascular bed. The interstitial pressure in the islet transplants was markedly lower than the capillary pressure. There were clearly differences in microcirculation between syngeneic and xenogeneic islet grafts. The phenomena of microcirculation failure were observed in xenografts. The influential factors of microcirculation after ILT were ①culture temperature of isolated islets, ②cultured time and cryopreserved method of islets, ③blood glucose, ④immunosuppressive agents, ⑤angiogenesis factors. Conclusion Microvascularization of freely islet grafts is one of the essential requirements for successful engraftment, guaranteeing sufficient nutritional blood supply to the tissue and establishing blood drainage for adequate liberation of the endocrine hormones. Through the studies of the microcirculation after ILT, it is helpful to recognize the mechanism of the survival of islet grafts.
【Abstract】 Objective To explore good methods for isolation and purification of rat islets. Methods The isletswere isolated from male SD rat pancreata by a collagenase perfusion method and purified by a modified method: added 4 kinds of Euro-Ficoll of different densities (F1: D=1.132, F2: D=1.108, F4: D=1.069, F5: D=1.023), discontinuous density gradient centrifuge the tube at 2 000 r/min for 20 minutes at 4℃ , then the islets between F1 and F2 were collected. The purity of islets was assessed by dithizone staining with islets counted and scored for size. Islets viabil ity was assessed by fluorescin diacetate / propidium iodide. The function of purified islets was judged by the test of insul in release and islets transplantation. Results After an improved method for optimized isolation and purification, (920±122) IEQ purified islets were obtained from one rat. Both the purity and viabil ity of islets were over 90%. The amount of insul in secretion was (18.25±0.32) mU/L and (36.70±3.57) mU/Lat 2.2 mmol/ L and 22.2 mmol/L concentration of glucose respectively, there was significant difference between the two phases(P lt; 0.05). The insul in release index was 2.01±0.15. Under 1 000 IEQ islets transplantation, the normal glucose level could beremained in diabetic rats. Conclusion High purity and high viabil ity islet cells can be got through improved collagenase perfusion and centrifugation on gradients method.
Objective To study the effect of pravastatin on the survival of islet xenografts.MethodsPigtomouse islet transplantation was performed. The models were divided into 4 groups: group A (control); group B, treated with CsA; group C, treated with pravastatin; group D, treatment with combined CsA with pravastatin. The survival time (ST) of the grafts in each group were recorded. Histological examination was used to detect the inflammation and islet cells in the graft. The infiltrated cells were detected by immunohistochemistry with CD4+, CD8+ and CD68 monoclonal antibody. The serum NO was measured. RTPCR was used in the test of IFNγ mRNA.ResultsThe ST of group A,B,C,D was (6.2±0.82) d, (9.2±1.92) d, (7.2±1.30) d, (11.2±1.76) d respectively, the ST of group D was much longer than that of the other groups (P<0.05).Compared to that in other groups, less infiltrated cell in group D was found. On the 4th postoperative day, the serum NO in group A was (105.0±19.3) mmol/L,significantly higher than that in group B 〔(88.20±21.04) mmol/L〕, in group C 〔(70.7±17.8) mmol/L)〕 and in group D 〔(56.30±16.4) mmol/L〕. When rejection occurred, the serum NO in group C and D was (83.7±10.6) mmol/L and (71.3±13.8) mmol/L, also lower than that in group A (P<0.05), the serum NO in group B was (104.7±16.3) mmol/L, compared that in group A, no significance was present (Pgt;0.05). On the 4th postoperative day, the serum expression of IFNγ mRNA in group D was 23.5±4.6, lower than that in group A (28.8±4.8), and no significance was present compared with that in group B and C. ConclusionPravastatin can abate the role of macrophages, especially combined with Cyclosporine, and can prolong the survival of islet xenograft.
Objective To summarize and analyze the different modality on molecular imaging of tracking and monitoring for islet transplantation.Methods The current domestic and foreign reports on molecular imaging of islet transplantation were reviewed.Results Magnetic resonance imaging has high sensitivity,high spatial resolution,no ionizing radiation,is clinically applicable,and could be used of real-time MR-guided injections,but can’t discriminate between liver and dead cells,difficult to do in patients with liver iron overload.Nuclear molecular imaging only displays liver cells generate signal,is clinically applicable,but disadvantage is genetic manipulation,ionizing radiation,no anatomical information,low spatial resolution.The advantage of in vivo optical imaging is only liver cells generate signal,widely available,no ionizing radiation,and the disadvantage is genetic manipulation,not clinically applicable,low spatial resolution.Conclusions Islet imaging using magnetic resonance,nuclear molecular imaging,in vivo optical imaging,or multimodal imaging of microencapsulated islets may provide us with a direct means to interrogate islet cell distribution,survival,and function.Multimodal imaging of microencapsulated islets may be best way for tracking and monitoring in the future.
Diabetes is characterised by hyperglycaemia resulted as the relative or absolute insulin deficiency which is closely related to islet beta cell failure. Apoptosis is the core mechanism of beta cell failure according to the studies on human islet. However, apoptosis can’t fully explain the loss of beta cell mass in the process of type 2 diabetes or the protective effect of early intervention. Recently, some other possible mechanisms of beta cell dysfunction have been proposed and dedifferentiation of beta cell draws extensive attention. Evidences of beta cell dedifferentiation in type 2 diabetes patients and animal models outlined and the transcription factors which determine beta cells of identity during this procedure are discussed in this review.
Objective To introduce a new method of tissue engineering research by transplanting vessels to tissue engineering chamber (vascularized tissue engineering chamber) in vivo, and to review the progress of research in vascularized tissue engineering chamber. Methods The l iterature concerning all kinds of tissue engineering research in chamber was reviewed, analysed, and summarized. Results The use of vascularized tissue engineering chamber allowed generation of vascularized adipose tissue, cardiac tissue, and so on. The most common tissue engineering chamber models were arterio-venous loop model and inferior epigastric artery model. Conclusion The method of tissue engineering research by using vascularized tissue engineering chamber has a potential cl inical value and provides a promising future.
Objective To investigate the effect of constitutively active Akt1 gene on rat engrafted islets in apoptosis and revascularization, and to explore potential method of gene therapy in the islet transplantation. Methods Rat islet which was transfected constitutively actived Akt1 gene via adenovirus vector using MOI=500. Thirty-six streptozotocin induced diabetic Wistar rats were divided into 3 groups complete randomly: Adv-CA-Akt1 group, Adv-LacZ group and simple transplantation group. Blood glucose and insulin were determined after operation. TUNEL was used to detect the apoptotic islet cells. HE and immunohistochemical staining of insulin were used to evaluate the histology of the islet grafts. The microvessel density (MVD) was determined by CD31 immunohistochemical staining. Results The fasting glucose level in Adv-CA-Akt1 group restored to normal 2 days after transplantation. However, in Adv-LacZ group and simple transplantation group, it reduced but still kept being hyperglycemia. And the serum insulin level was higher than other two groups ( P < 0.05). Compared to simple transplantation group and Adv-LacZ group, apoptotic rate decreased 25% in Adv-CA-Akt1 group, a large number of islet grafts were seen under the capsule of the kidney, which were positively stained by insulin antibody. In the other two groups, the islet groups mass were lighter, and few positively stained by insulin antibody. MVD showed lighter positive endothelial cells stained by CD31 antibody in the other two groups than Adv-CA-Akt1 group ( P < 0.05). Conclusion Constitutively activate Akt1 gene can prolong graft survival during early posttransplant period, and can accelerate the revascularization of islet grafts effectively.
ObjectiveTo investigate the significant effect of costimulatory pathway B7CD28/CTLA4 on the islets of Langerhans transplantation. MethodsThe literatures were reviewed to summarize the molecular structure and functions of the pathway and the related animal experiments.ResultsThe costimulatory pathway B7CD28/CTLA4 was one of the signaling pathways of T cells activation and proliferation. If the costimulatory signals were absent, Tlymphocyte would be induced to the clonalanegy. Through blocking the costimulatory pathway mediated by CD28, CTLA4Ig prolonged to the islets of Langerhans survival in recipients. ConclusionBy the studies of the costimulatory pathway, it is helpful to understand the immune mechanism of the survival of islet grafts.
Objective To investigate differential points of clinical symptoms and pathology of solid-pseudopapillary tumor of the pancreas (SPTP) and islet cell tumor (ICT). Methods Fifteen cases of SPTP and twelve cases of ICT were studied in this retrospective research. Clinical symptom, pathologic feature and computed tomography (CT) image of patients with both tumors were analyzed, and the imaging features were compared with pathological results. Results The mean age of SPTP patients was 22.4 year-old. Twelve patients with SPTP presented a palpable abdominal mass as the initial symptom. It was observed that the tumor cells were located in a pseudopapillary pattern with a fibro-vascular core histologically. On the CT images, a mixture of solid and cystic structures could be seen in all the tumors. After taking enhanced CT scan, the solid portion was slightly enhanced in the arterial phase and the contrast intensity increased in the portal venous phase. On the other hand, the mean age of ICT patients was 39.3 year-old. The major symptom was due to the function of islet cell tumor, which was typical in 8 patients, presenting as Whipple triad. Histologically, cells demonstrated in trabecular, massive, acinar or solid patterns, and the blood supply of the tumor was abundant. On the CT images, most small tumors were difficulty to be detected. ICT could be markedly enhanced in the arterial phase and slightly enhanced in the portal venous phase on post-contrast CT scan. Conclusion Clinical symptom, pathologic feature and CT scanning are helpful to differentiate SPTP from ICT.
Objective To review the common methods of isolation and purification of porcine islets and research progress. Methods Domestic and abroad literature concerning the isolation and purification of porcine islets was reviewed and analyzed thoroughly. Results The efficacy of the isolation and purification depends on the selection of donor, the procurement and cryopreservation of high-quality donor pancreas, and the selection and improvement of the operation. Conclusion The shortage of transplanted islets could be resolved by the establishment of standardized and optimal process, which may also promote the development of porcine islet xenograft.