west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Neural stem cell" 26 results
  • THE OPTIMIZATION OF THE METHOD OF CULTURING NEURAL STEM CELLS IN NEONATAL RAT BRAIN

    Objective To establish a better method of isolating andculturing ofneural stem cells(NSCs) in neonatal rat brain. Methods Tissue of brain was isolated from neonatal rats. Different medium and culture concentration were used toculture NSCs of neonatal rat. The culture concentration used were 1×10 4, 1×105, 1×106and 1×107/ml respectively. Ingredient of medium was classified into group 1 to 8 respectively according to whether to add 2% B27, epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) as well as the difference in culture concentration. The cells were induced to differentiate asto be confirmed as NSCs, and then were checked by phase contrast microscopy and identified by immunocytochemistry. Results The cells isolated and cultured gathered into neurospheres. The cells were capable of proliferating and maintaining longterm survival in vitro. The cells could be differentiated into neurons and glia.It was to the benefit of the survival of NSCs to add 5% fetal bovine serum(FBS)into the medium at the beginning of the culturing. When 10% FBS was added intothe medium, the neurospheres differentiated quickly. When concentration 1×106/ ml was used, the growth rate of the cells was the highest of all the concentrations. Reasonably higher cell concentration promoted the proliferation of NSCs. It was necessary to add 2% B27, EGF, and bFGF into the medium. The cells had the best growth when 2% B27, 20 ng/ml bFGF and 20 ng/ml EGF were added into the culture medium. EGF and bFGF had cooperative effect. Conclusion A better method of isolating and culturing of NSCs in neonatal rat brain is established and the foundation for future research is laid.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • ISOLATION AND CULTURE OF NEURAL STEM CELLS IN INJURED REGION OF COMPRESSIVE SPINAL CORD INJURY IN ADULT RAT

    Objective To investigate the division, prol iferation and differentiation abil ities of nestin+/GFAP+cell after spinal cord injury and to identify whether it has the characteristic of neural stem cells (NSCs). Methods Twelvemale SD rats, aged 8 weeks and weighing 200-250 g, were randomized into 2 groups (n=6 per group): model group inwhich the spinal cord injury model was establ ished by aneurysm cl ip compression method, and control group in which no processing was conducted. At 5 days after model ing, T8 spinal cord segment of rats in each group were obtained and the gray and the white substance of spinal cord outside the ependymal region around central tube were isolated to prepare single cellsuspension. Serum-free NSCs culture medium was adopted to culture and serum NSCs culture medium was appl ied to induce differentiation. Immunohistochemistry detection and flow cytometry were appl ied to observe and analyze the type of cells and their capabil ity of division, prol iferation and differentiation. Results At 3-7 days after injury, the model group witnessed a plenty of nestin+/GFAP+ cells in the single cell suspension, while the control group witnessed few. Cell count of the model and the control group was 5.15 ± 0.71 and 1.12 ± 0.38, respectively, indicating there was a significant difference between two groups (P lt; 0.01). Concerning cell cycle, the proportion of S-phase cell and prol iferation index of the model group (15.49% ± 3.04%, 15.88% ± 2.56%) were obviously higher than those of the control group (5.84% ± 0.28%, 6.47% ± 0.61%), indicating there were significant differences between two groups (P lt; 0.01). In the model group, primary cells gradually formed threedimensional cell clone spheres, which were small in size, smooth in margin, protruding in center and positive for nestin immunofluorescence staining, and large amounts of cell clone spheres were harvested after multi ple passages. While in the control group, no obvious cell clone spheres was observed in the primary and passage culture of single cell suspension. At 5 days after induced differentiation of cloned spheres in the model group, immunofluorescence staining showed there were a number of galactocerebroside (GaLC) -nestin+ cells; at 5-7 days, there were abundance of β-tubul in III-nestin+ and GFAP-nestin+ cells; and at 5-14 days, GaLC+ ol igodendrocyte, β-tubul in II+ neuron and GalC+ cell body and protruding were observed. Conclusion Nestin+/GFAP+ cells obtained by isolating the gray and the white substance of spinal cord outside the ependymal region around central tube after compressive spinal cord injury in adult rat has the abil ity of self-renewal and the potential of multi-polarization and may be a renewable source of NSCs in the central nervous system.

    Release date:2016-09-01 09:05 Export PDF Favorites Scan
  • Experimental study of lentivirus-mediated Nogo extracellular peptide residues 1-40 gene and neurotrophin 3 gene co-transduction in neural stem cells

    ObjectiveTo explore the feasibility of co-transduction and co-expression of Nogo extracellular peptide residues 1-40 (NEP1-40) gene and neurotrophin 3 (NT-3) gene into neural stem cells (NSCs).MethodsNSCs were derived from the cortex tissue of Sprague Dawley rat embryo. The experiment included 5 groups: no-load lentiviral vector transducted NSCs (group A), NEP1-40 transducted NSCs (group B), NT-3 transducted NSCs (group C), NEP1-40 and NT-3 corporately transducted NSCs (group D), and blank control (group E). Target genes were transducted into NSCs by lentiviral vectors of different multiplicity of infection (MOI; 5, 10, 15) for different time (24, 48, 72 hours). Fluorescent microscope was used to observe the expression of fluorescence protein and acquire the optimum MOI and optimum collection time. Real-time fluorescence quantitative PCR and Western blot tests were utilized to evaluate the gene expressions of NEP1-40 and NT-3 in NSCs and protein expressions of NEP1-40 and NT-3 in NSCs and in culture medium.ResultsThe optimum MOI for both target gene was 10 and the optimum collection time was 48 hours. The real-time fluorescence quantitative PCR and Western blot results showed that the mRNA and protein relative expressions of NEP1-40 in groups B and D were significantly higher than those in groups A and C (P<0.05), but no significant difference was found between groups B and D, and between groups A and C (P>0.05). The mRNA and protein relative expressions of NT-3 in groups C and D were significantly higher than those in groups A and B (P<0.05), but no significant difference was found between groups A and B, and between groups C and D (P>0.05).ConclusionNEP1-40 and NT-3 gene can be successfully co-transducted into NSCs by the mediation of lentiviral vector. The expressions of the two target genes are stable and have no auxo-action or antagonism between each other.

    Release date:2018-04-03 09:11 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON NEURAL STEM CELL TRANSPLANTATION DELAYING DENERVATED MUSCLEATROPHY

    Objective To observe the delaying effect of neural stem cell (NSC) transplantation on denervated muscle atrophy after peri pheral nerve injury, and to investigate its mechanism. Methods NSCs were separated from the spinal cords of green fluorescent protein (GFP) transgenic rats aged 12-14 days mechanically and were cultured and induced to differentiate in vitro. Thirty-two F344 rats, aged 2 months and weighed (180 ± 20) g, were randomized into two groups (n=16 per group). The animal models of denervated musculus triceps surae were establ ished by transecting right tibial nerve and commom peroneal nerve 1.5 cm above the knee joints. In the experimental and the control group, 5 μL of GFP-NSCsuspension and 5 μL of culture supernatant were injected into the distal stump of the tibial nerve, respectivel. The generalcondition of rats after operation was observed. At 4 and 12 weeks postoperatively, the wet weight of right musculus tricepssurae was measured, the HE staining, the Mallory trichrome staining and the postsynaptic membrane staining were adopted for the histological observation. Meanwhile, the section area of gastrocnemius fiber and the area of postsynaptic membrane were detected by image analysis software and statistical analysis. Results The wounds in both groups of animals healed by first intension, no ulcer occurred in the right hind l imbs. At 4 and 12 weeks postoperatively, the wet weight of right musculus triceps surae was (0.849 ± 0.064) g and (0.596 ± 0.047) g in the experimental group, respectively, and was (0.651 ± 0.040) g and (0.298 ± 0.016) g in the control group, respectively, showing a significant difference (P lt; 0.05). The fiber section area of the gastrocnemius was 72.55% ± 8.12% and 58.96% ± 6.07% in the experimental group, respectively, and was 50.23% ± 4.76% and 33.63% ± 4.41% in the control group, respectively. There were significant differences between them (P lt; 0.05). Mallory trichrome staining of muscle notified that there was more collagen fiber hyperplasia of denervated gastrocnemius in the control group than that in the experimental group at 4 and 12 weeks postoperatively. After 12 weeks of operation, the area of postsynaptic membrane in the experimental group was (137.29 ± 29.14) μm2, which doubled that in the control group as (61.03 ± 11.38) μm2 and was closer to that in normal postsynaptic membrane as (198.63 ± 23.11) μm2, showing significant differences (P lt; 0.05). Conclusion The transplantation in vivo of allogenic embryonic spinal cord NSCs is capable of delaying denervated muscle atrophy and maintaining the normal appearance of postsynaptic membrane, providing a new approach to prevent and treat the denervated muscle atrophy cl inically.

    Release date:2016-09-01 09:17 Export PDF Favorites Scan
  • The effects on the function and structure of retina in diabetic rats by intravitreal transplantation of human umbilical cord cells-induced neuronal stem cells

    ObjectiveTo observe the effects on the function and structure of retina in diabetic rats by intravitreal transplantation of retinal nerve stem cells (NSC) differentiated from human umbilical cord mesenchymal stem cells (hUCMSCs). MethodsFifty clean male Sprague-Dawley rats were randomly divided into normal control with 9 rats (group A) and diabetes mellitus (DM) group with 31 rats. The DM models were induced by intraperitoneal injection of streptozocin. The rats of DM group were randomly divided into four groups after 10 weeks: rats with DM only (group B), diabetic rats with saline intravitreal injection (group C), diabetic rats with NSC intravitreal injection (group D), and 9 rats for each. The rats in the group A and B received no treatment. The retinal function was examined by the flash-electroretinogram on 2, 4, 6 weeks after intervention, the latency and amplitude of a-wave, b-wave of Rod, a-wave, b-wave of Max reactions (Max-R) and the total amplitudes of OPs were recorded. The morphological changes of retina were observed by hematoxylin-eosin staining. ResultsOn 2 and 4 weeks after the intervention, the differences of latency and amplitude of b-wave of Rod, a-wave, b-wave of Max-R and the total amplitudes of OPs among group A-D were significant (P<0.05). Compared group D with group B, C, the amplitude of b-wave of Rod, Max-R and the total amplitudes of OPs were increased (P<0.05); latency of b-wave of Max-R was decreased (P<0.05). On 6 weeks after the intervention, the amplitude of b-wave of Rod and the amplitude of a-wave, b-wave of Max-R and the total amplitudes of OPs in group D were increased compared with group B and C (P<0.05), the latency of b-wave of Rod and Max-R in group D were decreased compared with group C (P<0.05). On 10 weeks after molding, each retinal layers were disordered in diabetes mellitus group. On 2 weeks after the intervention, the number of cells in the retinal layers in group B and C were reduced compared with group A, and the structure was more disorder. On 4 weeks after the intervention, the structure of each retina layer in group D arranged less disordered, and the number of retinal ganglion cells was more than group B and C. It was also found that the retinal vascular endothelial expanded and retinal blood vessels cells proliferated. ConclusionThe function of retina in diabetes mellitus rats is improved by intravitreal injection of retinal NSCs differentiated from hUCMSCs.

    Release date:2016-10-02 04:55 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF NEURAL STEM CELLS SIGNAL TRANSDUCTION PATHWAY

    To summarize Notch, basic hel ix-loop-hel ix (bHLH) and Wnt gene signal transduction pathways in the process of differentiation and development of neural stem cells. Methods The l iterature on the gene signal transduction pathway in the process of differentiation and development of neural stem cells was searched and then summarized and analyzed. Results The formation of Nervous System resulted from common actions of multi-signal transduction pathways. There may exist a fixed threshold in the compl icated selective system among Notch, bHLH and Wnt gene signal transduction pathways. Conclusion At present, the specific gene signal transduction pathway of multi pl ication and differentiation of neural stem cells is still unclear.

    Release date:2016-09-01 09:12 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF NEURAL REGULATION MECHANISM OF VASCULOGENESIS

    ObjectiveTo review the research progress of neural regulation mechanism of vasculogenesis. MethodsThe relevant literature on neural regulation mechanism of vasculogenesis was extensively reviewed. ResultsNeural regulation of vasculogenesis depends on synergistic effect among various cells of neurovascular unit, and co-participation of multiple cytokines, and it is closely related to a variety of repair mechanism, such as nerve regeneration and synaptic plasticity, but the specific mechanism need to be further investigated. ConclusionThe research of the neural regulation mechanism of vasculogenesis will contribute to further understanding repair mechanism of nerves and vessels injuries.

    Release date: Export PDF Favorites Scan
  • DIFFERENTIATION AND PROLIFERATION POTENTIAL OF NEURAL STEM CELLS IN SUBVENTRICULAR ZONE OF MICE IN VITRO

    ObjectiveTo establish the system of isolation, cultivation, and identification of the neural stem cells (NSCs) from subventricular zone (SVZ) of neonatal mice so as to seek for the appropriate seed cells for potential therapeutic interventions of neurological disorders. MethodsNSCs were isolated enzymatically and mechanically from SVZ of neonatal mice and cultured. The cellular morphology was observed by inverted microscopy. Immunocytochemical stainings of anti-Nestin and anti-SOX-2 were used to identify NSCs of passage 3. To study the differentiation of NSCs, NSCs were plated into 24-wells in the medium supplemented without epidermal growth factor (EGF) and basic fibroblastic growth factor (bFGF) for 3 or 7 days. To compare the differentiation and proliferation potential of NSCs with different cultivation time, the BrdU pulse-labeling method and MTT test were used. To identify neurons and astrocytes, the anti-β-tubulin Ⅲ (Tuj-1) and anti-glial fibrillary acidic protein (GFAP) staining were used. ResultsThe cells of the SVZ can be isolated and cultured in vitro, and these cells began to form neurospheres after cultured for 3 days at primary passage. While cultured for 7 days, these cells formed more neurospheres, and the volume of the neurospheres became bigger than neurospheres cultured for 3 days. In addition, after cultured for 7 days, the phenomena of fusion of neurospheres and adherent differentiation of neurospheres were observed under inverted microscope. These cells were provided with the typical phenotype of NSCs. The immunofluorescence staining results revealed that these cells showed positive immunoreactivity to Nestin and SOX-2. During the 4 hours BrdU pulse, the number of proliferated NSCs cultured for 3 days (75.817±2.961) was significantly higher than that of NSCs cultured for 7 days (56.600±4.881) (t=3.366, P=0.028). The results of MTT assay revealed that the absorbance (A) value of NSCs cultured for 3 days (0.478±0.025) was significantly higher than that of NSCs which were cultured for 7 days (0.366±0.032)(t=2.752, P=0.011). After cultivated without EGF and bFGF, the percentage of Tuj-1 and GFAP positive cells in NSCs was 23.1%±3.7% and 23.7%±3.8% for 3 days and was 40.1%±3.6% and 37.1%±4.5% for 7 days, respectively, all showing significant differences (t=3.285, P=0.030; t=3.930, P=0.017). ConclusionThe NSCs from SVZ of neonatal mice have potentials of self-renewal and multipotential differentiation in vitro. With different cultivation time, the potentials of proliferation and differentiation of NSCs are different.

    Release date: Export PDF Favorites Scan
  • The advance of endogenous neural stem cell features for retinal Müller cell

    Neural stem cell is a kind of stem cells that can differentiate into neural and glial cells. While Müller cells, the main endogenous neural stem cell in retina,have the features to reentry into the cell cycle and differentiate into neural cells after retinal damage. Although it is highly effective for retinal Müller cell differentiation spontaneously after retinal injury in vertebrates, this feature is rigorous restricted in mammals. Recently, some transcription factors,such as Ascl1, Sox2, Lin28, Atoh7, are sufficient to drive quiescent Müller cells back in proliferation to generate new retinal neurons. Moreover, combining Ascl1 expression with a histone deacetylase inhibitor can bypass the limitation and increase the generation of new neurons in the adult retina. These regenerated neurons integrate the existing neuronal network and are able to respond to light, indicating that they can likely be used to restore vision. While these results are extremely promising, the regenerative response is still limited, likely because the proliferative capacity of mammalian Müller cells is low compared to their zebrafish counterparts. It is indeed necessary to identify new factors increasing the efficiency of the regenerative response.

    Release date:2019-11-19 09:24 Export PDF Favorites Scan
  • Therapeutic effect of stem cell-based glial cell derived neurotrophic factor and ciliary neurotrophic factor on retinal degeneration of CLN7 neuronal ceroid-lipofuscinosis mouse model

    ObjectiveTo observe the morphological and functional changes of retinal degeneration in mice with CLN7 neuronal ceroid-lipofuscinosis, and the therapeutic effects of glial cell derived neurotrophic factor (GDNF) and/or ciliary neurotrophic factor (CNTF) based on neural stem cells (NSC) on mouse photoreceptor cells. MethodsA total of 100 CLN7 mice aged 14 days were randomly divided into the experimental group and the control group, with 80 and 20 mice respectively. Twenty C57BL/6J mice aged 14 days were assigned as wild-type group (WT group). Mice in control group and WT group did not receive any interventions. At 2, 4, and 6 months of age, immunohistochemical staining was conducted to examine alterations in the distribution and quantity of cones, rod-bipolar cells, and cone-bipolar cells within the retinal of mice while electroretinography (ERG) examination was utilized to record scotopic a and b-waves and photopic b-wave amplitudes. At 14 days of age, the mice in the experimental group were intravitreally injected with 2 μl of CNTF-NSC, GDNF-NSC, and a 1:1 cell mixture of CNTF-NSC and GDNF-NSC (GDNF/CNTF-NSC). Those mice were then subdivided into the CNTF-NSC group, the GDNF-NSC group, and the GDNF/CNTF-NSC group accordingly. The contralateral eyes of the mice were injected with 2 μl of control NSC without neurotrophic factor (NTF) as their own control group. At 2 and 4 months of age, the rows of photoreceptor cells in mice was observed by immunohistochemical staining while ERG was performed to record amplitudes. At 4 months of age, the differentiation of grafted NSC and the expression of NTF were observed. Statistical comparisons between the groups were performed using a two-way ANOVA. ResultsCompared with WT group, the density of cones in the peripheral region of the control group at 2, 4 and 6 months of age (F=285.10), rod-bipolar cell density in central and peripheral retina (F=823.20, 346.20), cone-bipolar cell density (F=356.30, 210.60) and the scotopic amplitude of a and b waves (F=1 911.00, 387.10) in central and peripheral retina were significantly decreased, with statistical significance (P<0.05). At the age of 4 and 6 months, the density of retinal cone cells (F=127.30) and b-wave photopic amplitude (F=51.13) in the control group were significantly decreased, and the difference was statistically significant (P<0.05). Immunofluorescence microscopy showed that the NSC transplanted in the experimental group preferentially differentiated into astrocytes, and stably expressed CNTF and GDNF at high levels. Comparison of retinal photoreceptor nucleus lines in different treatment subgroups of the experimental group at different ages: CNTF-NSC group, at 2 months of age: the whole, central and peripheral regions were significantly different (F=31.73, 75.06, 75.06; P<0.05); 4 months of age: The difference between the whole area and the peripheral region was statistically significant (F=12.27, 12.27; P<0.05). GDNF/CNTF-NSC group, 2 and 4 months of age: the whole (F=27.26, 27.26) and the peripheral area (F=16.01, 13.55) were significantly different (P<0.05). In GDNF-NSC group, there was no statistical significance at all in the whole, central and peripheral areas at different months of age (F=0.00, 0.01, 0.02; P>0.05). ConclusionsCLN7 neuronal ceroid-lipofuscinosis mice exhibit progressively increasing degenerative alterations in photoreceptor cells and bipolar cells with age growing, aligning with both morphological and functional observations. Intravitreal administration of stem cell-based CNTF as well as GDNF/CNTF show therapeutic potential in rescuing photoreceptor cells. Nevertheless, the combined application of GDNF/CNTF-NSC do not demonstrate the anticipated synergistic protective effect. GDNF has no therapeutic effect on the retinal morphology and function in CLN7 neuronal ceroid-lipofuscinosis mice.

    Release date:2024-07-16 02:36 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content