west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Neuron" 38 results
  • THE IN VITRO STUDY OF THE HUMAN ADIPOSE TISSUEDERIVED STROMAL CELLS DIFFERENTIATING INTO THE NEURONLIKE CELLS

    Objective To investigate the possibility of theadipose tissue-derived stromal cells(ADSCs) to differentiate into the neuron-like cells and to explore a new cell source for the transplantation related to the central nervous system. Methods Adipose was digested by collagenase, cultured in the fetal bovine serum containing a medium. Trypse was used to digest the cells and the cell passage was performed. The 3rd to the 9th passage ADSCs were used to make an induction. Isobutylmethylxanthine, indomethacin, insulin, and dexamethasone were used to induce the ADSCs to differentiate into the neuron-like cells and adipocytes. Sudan black B and immunocytochemistry were used to identify the cells. Results A population of the ADSCs could be isolated from the adult human adipose tissue, they were processed to obtain a fibroblast-like population of the cells and could be maintained in vitro for an extendedperiod with the stable population doubling, and they were expanded as the undifferentiated cells in culture for more than 20 passages, which indicated their proliferative capacity. They expressed vimentin and nestin, and characteristics of the neuron precursor stem cells at an early stage of differentiation. And the majority of the ADSCs also expressed the neuron-specific enolase and βⅢ-tubulin, characteristics of the neurons. Isobutyl-methyxanthine, indomethacin, insulin, and dexamethasone induced 40%-50% of ADSCs to differentiate into adipocytes and 0.1%0.2% of ADSCs into neuron-like cells. The neuron-like cells had a complicated morphology of the neurons, and they exhibited a neuron phenotype, expressed nestin, vimentin, neuron-specific enolase and βⅢ-tubulin, but some neuron-like cells also expressed thesmooth muscle actin (SMA), and the characteristics of the smooth muscle cells; however, the neurons from the central nervous system were never reported to express this kind of protein. Therefore, the neuron-like cells from the ADSCs could be regarded as functional neurons. Conclusion Ourresults support the hypothesis that the adult adipose tissue contains the stem cells capable of differentiating into the neuron-like cells, and they can overcome their mesenchymal commitment, which represents an alternative autologous stemcell source for transplantation related to the central nervous system.

    Release date:2016-09-01 09:26 Export PDF Favorites Scan
  • Ultrastructural characteristics of human retinal progenitor cells

    Objective To observe the ultrastructural characteristics of human retinal progenitor cells cultured in vitro. Methods Six 5-month-old human fetuses(12 eyes)without eye diseases were selected. Retinal progenitor cells from the retina of one eye of each fetus were cultured in vitro,and observed by transmission electronic microscopy(TEM); while those from the other eye were directly observed by TEM. Results Abundant heterochromatin were found in the karyon of 5-month embryonic retinal neuroepithelial cells,and the figure of the karyons was irregular.A few scattered initial cells were seen in retinal neuroepithelial layer with large karyon,smooth surface,abundant euchromatin,and distinct nucleolus.The human retinal progenitor cells cultured in vitro had the same ultrastructural characteristics as the initial cells:with huge karyon which almost occupied the whole cell,little cytoplasm,distint nucleolus,abundant euchromatin,and little heterochromatin.The cells clung to each other in the neural globoid cell mass.The size of the outer cells was large,and karyokinesis could be found. Conclusion The cultured human retinal progenitor cells are provided with the same ultrastructure characteristics as the initial cells. (Chin J Ocul Fundus Dis, 2006, 22: 185-187)

    Release date:2016-09-02 05:51 Export PDF Favorites Scan
  • EFFECT OF CRUSHING OF SCIATIC NERVE ON NEURON OF LUMBAR SPINAL CORD

    In order to investigate the effect of nerve compression on neurons, the commonly used model of chronic nerve compression was produced in 48 SD rats. The rats were sacrificed in 1, 2, 3, 4, 5 and 6 months after compression, respectively. The number of neuron and ultrashruchure of alpha-motor neurons and ganglion cells of the corresponding spinal segment were examined. The results showed as following: After the sciatic nerve were crushed, the number of neuron and ultrastructure of alpha-motor neurons and ganglion cells might undergo ultrastructural changes, and even the death might occur. These changes might be aggravated as the time of crushing was prolonged and the compression force was increased. It was concluded that for nerve compression, decompression should be done as early as possible in order to avoid or minimize the ultructural changes of the neuron.

    Release date:2016-09-01 11:07 Export PDF Favorites Scan
  • The preliminary study on commitment differentiation of embryonic stem cells induced by the medium of cultured retinal neurons of SD rats

    Objective To investigate the possibility of commitment differentiation of embryonic stem cells induced by the medium of cultured retinal neurons of SD rats. Methods The medium from cultured retinal neurons of SD rats were collected, sterilized and mixed with DMEM medium according to 2∶3 proportion, ES cells were cultured with these mixed medium and were observed under the phase contrast microscope daily, the induced cells were identified by NF immunohistochemistry methods. Results The ES cells cultured with these mixed medium can differentiate into neuron-like structure, and the induced cells were positive in NF immunofluorescence staining. Conclusion The medium from cultured retinal neurons of SD rats can induce ES cells commitment differentiation into neuron-like structure. (Chin J Ocul Fundus Dis, 2002, 18: 134-136)

    Release date:2016-09-02 06:01 Export PDF Favorites Scan
  • Clinical features analysis in 10 children with seizures as core symptoms of neuronal surface antibody syndromes

    ObjectiveTo study the clinical features of children with seizures as core symptoms of neuronal surface antibody syndromes. MethodsThe clinical data of neuronal surface antibody syndromes between December 2015 and December 2016 were obtained and analyzed. All children presented to hospital with seizures as core symptoms. ResultsThere were 1 male and 9 females in this study. The ages ranged from 3 years to 13 years. The disease course was between 3 and 14 days. All children presented to hospital with seizures as core symptoms.Two children had tonic seizures. one had tonic-clonic seizure. Seven had partial seizures. Among them, six children had status epilepticus and cluster attack. The other symptoms in the course of the disease were psychiatric symptoms and extrapyramidal symptoms.The anti-NMDAR antibody were found in 9 patients' CSF and blood. The LGI1 antibody was found in one patients' CSF and blood.The EEG test of 7 patients showed slow wave and sharp slow wave. Two showed spike wave. One showed slow wave.The MRI test of one patient showed abnormal. Ten cases were treated with IVIG and methylprednisolone during acute stage. The patients had been followed up for 3 to 6 months. Eight of them recovered completely. Two cases had seizures. Two cases diagnosed with anti-NMDAR related epilepsy received sound effects after treated with cyclophosphamide. ConclusionsConvulsion may be the first common symptom of neuronal surface antibody syndromes in children. Immune factors should be screened when children with acute seizures and status epilepticus. Accompanying psychiatric symptoms, autoimmune epilepsy should be considered. The most common neuronal surface antibody in children with neuronal surface antibody syndromes is NMDAR antibody. EEG usually shows slow wave and sharp slow wave during seizures. Brain MRI is usually normal. Immunotherapy is effective in the majority of patients as the first line treatment. When the first-line treatment failed, second-line immunotherapy such as cyclophosphamide shock therapy on a regular basis is helpful.

    Release date:2017-11-27 02:36 Export PDF Favorites Scan
  • Neuronavigation combined with intraoperative ultrasound in the resection of gliomas with epilepsy

    ObjectiveTo investigate the clinical value of neuronavigation combined with intraoperative ultrasound in the resection of glioma with epilepsy.MethodsTo review and analyze the clinical data of 47 glioma patients with epilepsy treated by intraoperative ultrasound-assisted neuronavigation during the period from June 30, 2012 to June 30, 2014, and to compare and analyze the extent of gliom resection and the control of epilepsy before and after surgery.ResultsAll the patients had no hematoma, infection or hemiplegia. MRI was reviewed 48 hours after surgery and MRI showed complete resection in 34 cases and subtotal resection in 13 cases. One year after the operation, the seizure control was evaluated. Engel’s class I, 17 cases, Engel’s class II, 20 cases, Engel’s class III, 10 cases. When the nerve function is protected, the tumor is removed and the epileptic seizure is controlled, and the clinical effect is remarkable.ConclusionsNeuronavigation is helpful to locate the lesion and brain functional area and design the surgical approach before surgery, and to guide the location and boundary of the lesion and functional area during surgery. Intraoperative ultrasound has many advantages such as noninvasive, repeatable and real-time examination. Neuronavigation combined with intraoperative ultrasound can achieve maximum resection of gliomas and epileptogenic foci and reduce the incidence of postoperative neurological dysfunction in patients.

    Release date:2019-05-21 08:51 Export PDF Favorites Scan
  • Effects of neonatol rabbit Schwann cells on promoting repair of optic nerve contusion in adult rabbits

    Objective To study the effects of neonatol rabbit Schwann cells(SC) on repair of optic contusion in adult rabbits. Methods 24 h after the adult rabbit optic nerves was contused,0.1 ml of SC suspension (group A) and saline water (group B) were injected into the vitreous of injured eyes respectively.All the animals were studied by retinal ganglion cell (RGC) and axon counting,flash visual evoked potential (FVEP) tests at various intervals after injury. Results At the 4th week after injury,the number of RGC was (19.89plusmn;3.79)/mm in group A and (12.67plusmn;4.12)/mm in group B,and the density of axons was (94.569plusmn;793)/mm2 in group A and (36.085plusmn;285)/mm2 in group B.There was dramatical difference between group A and B (Plt;0.01).The amplitude of FVEP wave of group A increased from 48% to 88% on the 3rd day after injury,and still dept 78% at the 8th week and group A was significantly higher than group B at various intervals (Plt;0.01). Conclusion SC are effective in promoting the repair of optic nerve contusion by increasing the survival rate of RGC,rescuing axons from degeneration,and dramatically promoting the function of the optic nerve. (Chin J Ocul Fundus Dis,2000,16:91-93)

    Release date:2016-09-02 06:05 Export PDF Favorites Scan
  • Research progress on mitophagy in epilepsy

    Epilepsy is a heterogeneous disease with a very complex etiological mechanism, characterized by recurrent and unpredictable abnormal neuronal discharge. Epilepsy patients mainly rely on oral antiseizure medication (ASMs) the for treatment and control of disease progression. However, about 30% patients are resistance to ASMs, leading to the inability to alleviate and cure seizures, which gradually evolve into refractory epilepsy. The most common type of intractable epilepsy is temporal lobe epilepsy. Therefore, in-depth exploration of the causes and molecular mechanisms of seizures is the key to find new methods for treating refractory epilepsy. Mitochondria are important organelles within cells, providing abundant energy to neurons and continuously driving their activity. Neurons rely on mitochondria for complex neurotransmitter transmission, synaptic plasticity processes, and the establishment of membrane excitability. The process by which the autophagy system degrades and metabolizes damaged mitochondria through lysosomes is called mitophagy. Mitophagy is a specific autophagic pathway that maintains cellular structure and function. Mitochondrial dysfunction can produce harmful reactive oxygen species, damage cell proteins and DNA, or trigger programmed cell death. Mitophagy helps maintain mitochondrial quality control and quantity regulation in various cell types, and is closely related to the occurrence and development of epilepsy. The imbalance of mitophagy regulation is one of the causes of abnormal neuronal discharge and epileptic seizures. Understanding its related mechanisms is crucial for the treatment and control of the progression of epilepsy in patients.

    Release date:2024-07-03 08:46 Export PDF Favorites Scan
  • THE NEUROTROPHIC EFFECTS OF CULTURING SCHWANNS CELLS ON ANTERIOR HORN NEURON OF SPINAL CORD

    Schwanns cells were obtained from the distal end of the sciatic nerve following Wallerian degeneration of SD rats. These cells were cultured with the anteriorhorn neuron of spinal cord of 14dayold SD rat fetus. The two kinds of cells were separated by a slice. Through the microscope, the dendrites and the morphology changes at the 24th, 48th, 72th, and 96 th hour after culture were observed. It was demonstrated that the Schwanns cells played the role of maintaining the survival of neuron and promoting the growth of dendrites. It was said that the Schwanns cells could secrete neurotrophic factor which made the body enlarged and caused the dendrites enlonged to several times of the body.

    Release date:2016-09-01 11:16 Export PDF Favorites Scan
  • A STUDY ON APOPTOSIS OF NEURONES WITHIN THE RETINA OF THE HUMAN FETUSES

    PURPOSES:To investigate the time of neuronie apoptosis in the retinas of Imman fetuses,and its relations with neuronie proliferation and differentiation, METHODS:The retinas of 27 human fetuses from 8th to 38th week of R,~til- ization age and 3 adults were studied by TdT-mediated dUTP nick end labelling(TUNEL) method. RESULTS:Tbe nuctei of labeled apoptotic cells were charaeterised by nuclear marginization,ehromatln condensation and cleseent shape,and some apoptotie bodies were visible in the specimens. The apoptosis of neuroepithelium of fetal rclina took place during 8th to 18th week, Apoptosis of ganglion cells were observed from 1256 to 18th week. The apoptos[s of pholorec, plors were formd from 14th to 2Ist week ,while thai of bipolar neurones and M~ller cells were found from ldth to 28th week. No apoptosb of ocstones were observed in the retinas after 28th week of fertilization age and within the retinas of adults. CONCLUSION:The proliferating cells of neuroepithelium and Ihe neurones which just differetiated from fetal retina might partly undergo apoptosis. The time of apoptosls of differentiated neurones was consistent with the time of the synapses formation between neurones and their targel cells. (Chin J Ocul Fundus Dis,1997,13:67 -69 )

    Release date:2016-09-02 06:12 Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content