ObjectiveTo systematically review the efficacy of zoledronic acid (ZOL) on postoperative osteoporosis vertebral fracture (OVFs) of patients undergoing percutaneous vertebroplasty (PVP) or percutaneous kyphoplasty (PKP).MethodsWe searched databases including PubMed, EMbase, CBM, CNKI, VIP and WanFang Data to collect randomized controlled trials (RCTs) about ZOL on postoperative OVFs of patients undergoing PVP or PKP from inception to June 30th, 2016. Two reviewers independently screened literature, extracted data and assessed the risk bias of included studies. Then, RevMan 5.3 software was used for meta-analysis.ResultsA total of 11 RCTs involving 950 cases of OVFs were included. The results of meta-analysis showed that: the bone mineral densities of the ZOL group at 6 months (SMD=0.62, 95%CI 0.06 to 1.18, P=0.03) and 12 months (SMD=1.32, 95%CI 0.62 to 2.02, P=0.000 2) after the operation were higher than those of the control group. The re-fracture risk of the ZOL group was lower than that of the control group (RR=0.27, 95%CI 0.16 to 0.47, P<0.000 01). The visual analogue scales of the ZOL group were lower than those of the control group at 3 weeks (SMD=–1.03, 95%CI –1.42 to –0.63, P<0.000 01), 1 month (SMD=–1.57, 95%CI –2.30 to –0.83, P<0.000 01), 3 months (SMD=–1.53, 95%CI –2.20 to –0.86, P<0.000 01), 6 months (SMD=–2.59, 95%CI –3.42 to –1.76, P<0.000 01), and 12 months (SMD=–2.69, 95%CI –4.21 to –1.18, P=0.000 5) after the operation. In addition, Oswestry disability index (ODI) score of the ZOL group was better than that of the control group at 1 year after the operation (SMD=–1.61, 95% CI–2.42 to –0.81, P<0.000 1).ConclusionsThe current evidence shows that the usage of ZOL after PVP/PKP has better effects, it relieves the pain further, increases the quantity of bone significantly, ameliorates the BMD, reduces the incidence of re-fracture and improves the quality of life. Due to the limited quantity and quality of included studies, more high-quality studies are needed to verify the above conclusion.
Objective To investigate the efficiency of manual reduction combined with uni-lateral percutaneous kyphoplasty (PKP) in treating osteoporotic vertebral compression fracture (OVCF). Methods Between May 2005 and May 2009, the manual reduction combined with uni-lateral PKP was appl ied to treat 42 patients with OVCF (group A), and the simple uni-lateral PKP was appl ied to treat 43 patients with OVCF (group B) at the same period. The visual analogue scale (VAS), the vertebral height, and the Cobb angle were determined before operation, and at 3 days and 6 months after operation. Ingroup A, there were 6 males and 36 females aged 59-93 years (76.5 years on average) with an average disease duration of 7 days (range, 3 hours to 21 days); 27 segments of thoracic vertebrae and 31 segments of lumbar vertebrae were involved, including 15 segments at mild degree, 38 segments at moderate degree, and 5 segments at severe degree according to degree classification system of compression fractures of Zoarski and Peh. In group B, there were 9 males and 34 females aged 54-82 years (75.3 years on average) with an average disease duration of 7 days (range, 1 hour to 20 days); 26 segments of thoracic vertebrae and 35 segments of lumbar vertebrae were involved, including 21 segments at mild degree, 36 segments at moderate degree, and 4 segments at severe degree according to degree classification system of compression fractures of Zoarski and Peh. There were no significant difference (P gt; 0.05) in sex, age, affected site, degree, and disease duration between 2 groups. Results There was no significant difference (P gt; 0.05) in operative time, blood loss, or injected cement volume between 2 groups. No serious compl ication or death occurred in 2 groups. Cement leakage was observed in 4 cases (9.5%) of group A and in 5 cases (11.6%) of group B. The VAS scores after operation significantly decreased in 2 groups (P lt; 0.01). At 3 days and 6 months after operation, the VAS scores in group A were significantly lower than those in group B (P lt; 0.05). The postoperative compression rates of affected vertebral body in 2 groups significantly decreased (P lt; 0.01). The compression rates of affected vertebral body at 3 days and 6 months after operation, and the height recovery rate at 3 days after operation in group A were superior to those in groupB (P lt; 0.05). The postoperative Cobb angles in 2 groups were significantly diminished (P lt; 0.01). The Cobb angles at 3 days and 6 months after operation, and the recovery rate at 3 days after operation in group A were superior to those in group B (P lt; 0.05). Conclusion The cl inical efficiency of the manual reduction combined with uni-lateral PKP is superior to that of simple uni-lateral PKP in treatment of severe OVCF.
Objective To summarize the research progress of secondary fracture of adjacent vertebral body after percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP). Methods Recent literature concerning PVP and PKP was extensively reviewed and summarized. Results The main reasons of secondary fracture of adjacent vertebral body after PVP and PKP are the natural process of osteoporosis, the initial fracture type, the bone cement, the surgical approach, the bone mineral density, and other factors. Conclusion Secondary fracture of adjacent vertebral body after PVP and PKP is a challenge for the clinician, a variety of factors need to be suficiently considered and be confirmed by a lot of basic and clinical epidemiological studies.
ObjectiveTo compare the effectiveness of percutaneous kyphoplasty (PKP) between by unilateral approach and by bilateral approaches for treating mid-thoracic osteoporotic vertebral compression fracture (OVCF). MethodA prospective randomized controlled study was performed on 22 patients with mid-thoracic OVCF between September 2012 and June 2014. PKP was performed by unilateral approach in 11 cases (group A) and by bilateral approaches in 11 cases (group B). There was no significant difference in gender, age, causes of injury, disease duration, affected segment, preoperative bone mineral density, Cobb angle, compression rate of the anterior verterbral height, and Visual analogue scale (VAS) score between 2 groups (P>0.05) . The operation time, perspective times, hospitalization expenses, the leakage of cement, the sagittal Cobb angle, compression rate of the anterior vertebral height, and VAS scores were compared between 2 groups. ResultsThe operation time, perspective times, and hospitalization expenses of group A were significantly less than those of group B (P<0.05) . Twenty-two patients were followed up 13-34 months (mean, 15.3 months). Primary healing of incision was obtained in all patients, and no early complication of cement leakage, hypostatic pneumonia, or deep vein thrombosis occurred. At last follow-up, no new fracture occurred at the adjacent segments. The Cobb angle, compression rate of anterior verterbral height, and VAS score at 1 week and last follow-up were significantly improved when compared with preoperative ones in 2 groups (P<0.05) , but no significant difference was found between at 1 week and at last follow-up (P>0.05) . There was no significant difference in Cobb angle, compression rate of the anterior vertebral height, and VAS score between 2 groups at each time point (P>0.05) . ConclusionsPKP by both unilateral approach and bilateral approaches has the same effectiveness, but unilateral approach has shorter operation time, less perspective times, and less hospitalization expenses than bilateral approaches.
ObjectiveTo investigate the effectiveness of synchronous unilateral percutaneous kyphoplasty (PKP) in the treatment of double noncontiguous thoracolumbar osteoporotic vertebral compression fracture (OVCF). MethodsBetween December 2018 and September 2020, 27 patients with double noncontiguous thoracolumbar OVCF were treated by synchronous unilateral PKP. There were 11 males and 16 females, with an average age of 75.4 years (range, 66-92 years). The fractures were caused by falls in 22 cases and sprains in 5 cases. The time from injury to hospital admission was 0.5-7.0 days, with an average of 2.1 days. The fractured vertebrae located at T9 in 2 cases, T10 in 3 cases, T11 in 10 cases, T12 in 15 cases, L1 in 12 cases, L2 in 6 cases, L3 in 4 cases, and L4 in 2 cases. The volume of bone cement injected into each vertebral body, operation time, and intraoperative fluoroscopy times were recorded. Anteroposterior and lateral X-ray films of thoracolumbar spine were taken to observe the anterior height of the injured vertebra, the Cobb angle of kyphosis, and the diffusion and good distribution rate of bone cement in the thoracolumbar spine. Visual analogue scale (VAS) score and Oswestry disability index (ODI) were used to evaluate the pain and functional improvement. ResultsAll operations completed successfully. The operation time was 34-70 minutes, with an average of 45.4 minutes. The intraoperative fluoroscopy was 21- 60 times, with an average of 38.6 times. The volume of bone cement injected into each vertebral body was 2-9 mL, with an average of 4.3 mL. All patients were followed up 6-21 months, with an average of 11.3 months. X-ray film reexamination showed that the anterior height of the injured vertebra and Cobb angle at each time point after operation were significantly improved than those before operation (P<0.05), and there was no significant difference between different time points after operation (P>0.05). The distribution of bone cement was excellent in 40 vertebral bodies, good in 13 vertebral bodies, and poor in 1 vertebral body, and the excellent and good rate was 98.1% (53/54). The pain of all patients significantly relieved or disappeared, and the function improved. The VAS score and ODI at each time point after operation were significantly lower than those before operation (P<0.05), and there was no significant difference between different time points after operation (P>0.05).ConclusionFor the double noncontiguous thoracolumbar OVCF, the synchronous unilateral PKP has the advantages of simple puncture, less trauma, less intraoperative fluoroscopy, shorter operation time, satisfactory distribution of bone cement, etc. It can restore the height of the vertebral body, correct the kyphotic angle, significantly alleviate the pain, and improve the function.
ObjectiveTo compare the clinical efficacy and safety between percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP) in the treatment of osteoporotic vertebral compression fracture (OVCF) with intravertebral vacuum cleft (IVC). MethodsBetween January 2010 and December 2013, 68 patients with single OVCF and IVC were treated, and the clinical data were retrospectively analyzed. Of 68 patients, 48 underwent PVP (PVP group) and 20 underwent PKP (PKP group). There was no significant difference in age, gender, disease duration, fracture level, bone mineral density (BMD), visual analogue scale (VAS), Oswestry disability index (ODI), and preoperative radiological parameters between 2 groups (P > 0.05). The intraoperative incidence of cement leakage, cement volume, and operative time were compared between 2 groups; VAS score was used for evaluation of back pain and ODI for evaluation of dysfunction; the incidence of adjacent vertebral fracture was observed within 2 years. The vertebral height and kyphotic angle were measured on X-ray films; the rate of vertebral compression (CR), reduction rate (RR), progressive height loss (PHL), reduction angle (RA), and progressive angle (PA) were calculated. ResultsThere was no significant difference in cement volume and the incidence of cement leakage between 2 groups (P > 0.05). The operative time in PVP group was shorter than that in PKP group, showing significant difference (t=-8.821, P=0.000). The mean follow-up time was 2.4 years (range, 2.0-3.1 years). The VAS scores and ODI were significantly reduced at 1 day, 1 year, and 2 years after operation when compared with preoperative scores (P < 0.05), but there was no significant difference between different time points after operation in 2 groups (P > 0.05). Adjacent vertebral fracture occurred in 5 cases (10.4%) of PVP group and in 2 cases (10.0%) of PKP group, showing no significant difference (χ2=0.003, P=0.963). BMD was significantly increased at 1 year and 2 years after operation when compared with preoperative BMD (P < 0.05), but no significant difference was found between 2 groups (t=0.463, P=0.642; t=0.465, P=0.646). The X-ray films showed that CR and kyphotic angle were significantly restored at immediate after operation in 2 groups (P < 0.05); but vertebral height and kyphotic angle gradually aggravated with time, showing significant difference between at immediate and at 1 and 2 years after operation (P < 0.05); there was no significant difference in CR and kyphotic angle between 2 groups at each time point (P > 0.05). RR, RA, PHL, and PA showed no significant difference between 2 groups (P > 0.05). ConclusionThere is similar clinical and radiological efficacy between PVP and PKP for treatment of OVCF with IVC. Re-collapse could happen after operation, so strict observation and follow-up are needed.
ObjectiveTo observe the clinical effect of unilateral puncture percutaneous kyphoplasty (PKP) through transverse process-pedicle approach (TPA) for the treatment of lumbar osteoporotic vertebral fractures (OVF).MethodsFrom January 2014 to June 2019, a total of 220 OVF patients (321 fractured vertebral bodies) were enrolled, and PKP was performed by unilateral TPA puncture. The distribution of bone cement in vertebral body exceeding the midline of vertebral body was defined as the success of puncture, and the success rates of puncture of different vertebral bodies were recorded. Visual Analogue Scale (VAS), Oswestry Disability Index (ODI), anterior and middle heights of the vertebral body, and the local Cobb angle were compared between three time points namely before operation, 1 day after operation, and 6 months after operation. Surgery-related complications were recorded.ResultsThe 220 patients included 57 males and 163 females, with a mean age of (70.3±6.5) years, a mean course of disease of (18.7±17.7) d, and a mean bone mineral density of −3.3±0.6. The success rate of puncture from L1 to L5 was 81.7% (85/104), 95.2% (80/84), 100.0% (69/69), 97.6% (41/42), and 72.7% (16/22), respectively. The mean volume of bone cement injected into the vertebral bodies was (5.8±0.9) mL. Two patients were followed up for less than 6 months because of death or loss to follow-up, and the other 218 patients were followed up for 6-57 months, with an average of (19.6±8.7) months. Before surgery, 1 day after surgery, and 6 months after surgery, the median (lower quartile, upper quartile) of VAS scores was 6 (6, 8), 1 (1, 2), and 2 (1, 2), respectively, with statistically significant differences in all the two-two comparisons (P<0.017). At the three time points, the median (lower quartile, upper quartile) of ODI was 61% (54%, 66%), 26% (22%, 30%), and 25% (24%, 31%), respectively, the mean height of anterior vertebral body was (18.3±2.8), (22.6±3.0), and (22.6±3.1) mm, respectively, the mean height of middle vertebral body was (17.8±2.2), (22.9±2.8), and (22.9±2.7) mm, respectively, the mean local Cobb angle was (19.9±2.6), (14.4±2.8), (14.4±2.8)°, respectively, and the values at 1 day and 6 months after surgery all differed from those before surgery (P<0.017). A total of 32 cases (42 vertebrae) had bone cement leakage, of whom 4 cases had related symptoms. There were 32 re-fractures of the vertebral bodies, including 18 adjacent vertebral body fractures, with an incidence rate of 5.6%. There were 3 vertebral infections after operation, the incidence was 0.9%.ConclusionPatients with OVF of the lumbar spine undergoing unilateral TPA puncture for PKP surgery have a high success rate, definite clinical effect, and satisfactory correction of local deformities.
ObjectiveTo compare the effect of percutaneous kyphoplasty (PKP) with different phases bone cement for treatment of osteoporotic vertebral compression fracture (OVCF).MethodsThe clinical data of 219 OVCF patients who treated with PKP and met the selection criteria between June 2016 and May 2018 were retrospectively analyzed. According to the different time of intraoperative injection of bone cement, they were divided into observation group [116 cases, intraoperative injection of polymethyl methacrylate (PMMA) bone cement in low-viscosity wet-sand phase)] and control group (103 cases, intraoperative injection of PMMA bone cement in low-viscosity wire-drawing phase). There was no significance in general date of gender, age, disease duration, body mass index, bone mineral density T value, fracture vertebral body, preoperative fracture severity of the responsible vertebral body, anterior height ratio of the responsible vertebral body, preoperative pain visual analogue scale (VAS) score, and Oswestry disability index (ODI) between the two groups (P>0.05). The VAS score and ODI score were used to evaluate the improvement of patients’ symptoms at immediate, 2 days, 3 months after operation and at last follow-up. At 1 day, 3 months after operation, and at last follow-up, X-ray film and CT of spine were reexamined to observe the distribution of bone cement in the vertebral body, bone cement leakage, and other complications. During the follow-up, the refracture rate of the responsible vertebral body and the fracture rate of the adjacent vertebral body were recorded.ResultsThe injection amount of bone cement in the observation group and control group were (4.53±0.45) mL and (4.49±0.57) mL, respectively, showing no significant difference between the two groups (t=1.018, P=0.310). Patients in both groups were followed up 6-18 months (mean, 13.3 months). There were 95 cases (81.9%) and 72 cases (69.9%) of the bone cement distribution range more than 49% of the cross-sectional area of the vertebral body in the observation group and the control group, respectively, showing significant difference in the incidence between the two groups (χ2=4.334, P=0.037). The VAS score and ODI score of the postoperative time points were significantly improved compared with those before operation (P<0.05), and there were significant differences among the postoperative time points (P<0.05). The VAS score and ODI score of the observation group were significantly better than those of the control group (P<0.05) at immediate, 2 days, and 3 months after operation, and there was no significant difference between the two groups at last follow-up (P>0.05). At 1 day after operation, the cement leakage occurred in 18 cases of the observation group (8 cases of venous leakage, 6 cases of paravertebral leakage, 4 cases of intradiscal leakage) and in 22 cases of the control group (9 cases of venous leakage, 8 cases of paravertebral leakage, 5 cases of intradiscal leakage). There was no significant difference between the two groups (P>0.05). During the follow-up, 5 cases (4.3%) in the observation group, 12 cases (11.7%) in the control group had responsible vertebral refracture, and 6 cases (5.2%) in the observation group and 14 cases (13.6%) in the control group had adjacent vertebral fracture, the differences were significant (χ2=4.105, P=0.043; χ2=4.661, P=0.031).ConclusionBone cement injection with wet-sand phase in PKP is beneficial for the bone cement evenly distributed, strengthening the responsible vertebral, relieving the short-term pain after operation, decreasing the rate of responsible vertebral refracture and adjacent vertebral fracture without increasing the incidence of relevant complications and can enhance the effectiveness.
ObjectiveEvaluating the clinical efficacy of percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP) for osteoporotic vertebral compressive fracture (OVCF). MethodsPatients with OVCF were retrospectively analyzed from Feb. 2008 to Feb. 2013 in Department of Orthopaedics, Tianjin Medical University General Hospital. Patients were divided into the PVP group and the PKP group. The VAS, vertebral kyphosis angle, vertebral height and bone cement leakage of both groups were compared, and the SPSS13.0 software was used for data analysis. ResultsA total of 55 patients were included. Of which, 25 patients were in the PVP group and 30 patients were in the PKP group. All patients were followed up from 5 to 20 months, with an average time of 15.5 months. The VAS scores in both groups were all improved after the operation (P<0.05), but no significant difference was found between both groups. The vertebral kyphosis angle in both groups were improved after the operation (P<0.05), and the PKP group was better than the PVP group. Six patients in the PVP group occurred the leakage of bone cement, and 4 patients in the PKP group. Five patients in the PVP groups occurred vertebral fracture again, while 7 patients in the PKP group. ConclusionUsing PVP and PKP for the treatment of OVCF can quickly relieve pain and increase the stability of the vertebral body. PKP can restore vertebral body height better and reduce the incidence of cement leakage.
Objective To analyse the correlative factors of secondary vertebral fracture after percutaneous kyphoplasty (PKP) in treatment of osteoporotic vertebral compression fracture (OVCF) at different levels (adjacent and/or nonadjacent levels). Methods Between December 2002 and May 2008, 84 patients with OVCF were treated with PKP, and the cl inical data were analysed retrospectively. There were 11 males and 73 females with an average age of 70.1 years (range, 55-90 years). All patients were followed up 24-96 months (mean, 38 months). Secondary vertebral fracture occurred in 12 cases at 3-52 months after PKP (secondary fracture group), no secondary fracture in 72 cases (control group) at over 24months. The preoperative bone mineral density, postoperative vertebral height compression rate, postoperative Cobb angle, amount of injected bone cement per vertebra, puncture pathway (uni- or bilateral puncture), age, gender, number of fracture segment, and cement intradiscal leakage were compared between 2 groups to find correlative factors of secondary vertebral fractures. Results There was no significant difference in preoperative bone mineral density, postoperative vertebral height compression rate, postoperative Cobb angle, amount of injected bone cement per vertebra, puncture pathway, age, gender, and number of fracture segment between 2 groups (P gt; 0.05). But the incidence of cement intradiscal leakage was much higher in secondary fracture group than in control group (χ2=5.294, P=0.032). Conclusion Cement intradiscal leakage may be the correlative factor of secondary vertebral fracture after PKP in OVCF.