west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Peripheral nerve" 84 results
  • EXPERIMENTAL STUDY ON PERIPHERAL NERVE REGENERATION AFTER ARTERY SLEEVE ANASTOMOSIS AND END-TO-SIDE SUTURE

    Objective To know the possibility of nerveregeneration after artery sleeve anastomosis and end-to-side suture Methods Seventy-five SD rats were divided into 5 groups. First, the distal end ofsevered peroneal nerve was sutured end-to -side with artery sleeve anastomosis withnormal nerve tibial trunk in groups A, B, C and D. Second, the tibial epineurium at the suture site was not removed in group A; the epineurium at the suturesite was removed(windowing) in group B; the distal end of pre-injured peroneal nerve was sutured after 14 days and windowing was done in group C; and the neural growth factor was injected into artery sleeve and windowing was done in group D. While the distal end of severed peroneal nerve was sutured end to side directly with normal nerve tibial trunk and windowing was done in group E. The histological observation was made and the number of nerve fibers was recorded after 4, 8 and 12 weeks of operation.Results After 4 weeks, there existed the regeneration of axons and myeline sheaths in groups C, D, E, and no nerve fiber regeneration was seen in group A. After 8 weeks, the regenerating nerve fibers were significantly more in groups C, D and E than in group B and ingroup E than groups C and D(Plt;0.05). After 12 weeks, the regenerating nervefibers were significantly more in groups C,D and E than in group B(Plt;0.05).Conclusion End-to-side coaptation with artery sleeve anastomosis is a new valuable method in repair of peripheral nerve injuries.

    Release date:2016-09-01 09:33 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY OF BRIDGING THE GAP OF THE PERIPHERAL NERVE WITH CHITIN IN RATS

    Thiry wistar rats were used and divided in 2 groups. A segment of 6mm was excised in the sciatic nerve which were then bridged with chitin and skelal muscle. at 4,8,12 weeks after operation, In the chitin group a satisfactory regeneration of nerve fibers was evident with electrophysiologic and histologic examinations, and HRP retrogade labelling evaluation. The possible mechanism of enhancing nerve regeneration of chitin was also discussed.

    Release date:2016-09-01 11:34 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON THE PROMOTIVE EFFECT OF PERCUTANEOUS ELECTRICAL STIMULATION ON PERIPHERAL NERVE REGENERATION

    To observe the effect of percutaneous electrical stimulation on peripheral nerve regeneration, a model was created on the sciatic nerves of 56 rats from either sectioned and followed by direct anastomosis or clamping of the nerve. The indices, such as conducting velocity of nerve, maximal induced action potential of muscle, growth speed of nerve, rateof axon crossing anastomosis site, number of muscular fiber on transverse area and weight of muscle by autocontrol were compared. In this study, 36 rats were divided into two groups, 24 rats in Group 1 and 12 rats in Group 2. In Gourp 1, both sciatic nerves were sectioned and was anastomozed 4 weeks later. One side of the nerve was stimulated with percutaneous electric current, the other side was served as control. In Group 2, both sides of nerves were clamped and the electical stimulationwas carried out on one side. The parameters of the electric current were 2~5HZ, 0.4m/s, 24~48V. The electrophysiological and histomorphological features were observed 1 to 6 weeks after operation. The results showed that in the stimulatedside, the indices were all superior to that of the control side. This suggestedthat electrical stimulation could promote peripheral nerve regeneration.

    Release date:2016-09-01 11:10 Export PDF Favorites Scan
  • ADVANCE IN STUDY OF ARTIFICIAL NERVE

    OBJECTIVE: To review the advance in materials of nerve conduit and Schwann cell transplantation for preparation of artificial nerve with tissue engineering technique. METHODS: Recent literatures about artificial nerve, nerve conduit and Schwann cell transplantation were extensively reviewed. RESULTS: Many biomaterials such as silicon, dacron, expanded polytetrafluoroethylene(ePTFE), polyester and chitin could be used as nerve conduits to repair nerve defect, the degradable biomaterials were better. The nerve conduit with intrinsic filaments could be used to bridge an extended gap in peripheral nerve. Purified and cultured Schwann cells were still bioactive. Axonal regeneration could be enhanced after implantation of Schwann cells into nerve conduit. CONCLUSION: The ideal artificial nerve is composed of three dimensional biodegradable nerve conduit and bioactive Schwann cells, Schwann cells can be distributed in nerve conduit just like Bünger’s band.

    Release date:2016-09-01 10:28 Export PDF Favorites Scan
  • MORPHOLOGICAL CHANGES AND ELECTROPHYSIOLOGICAL STUDY OF MOTOR NEURON OF SPINAL CORD FOLLOWING DELAYED REPAIR OF PERIPHERAL NERVE INJURY

    OBJECTIVE Following the delayed repair of peripheral nerve injury, the cell number of anterior horn of the spinal cord and its ultrastructural changes, motorneuron and its electrophysiological changes were investigated. METHODS In 16 rabbits the common peroneal nerves of both sides being transected one year later were divided into four groups randomly: the degeneration group and regeneration of 1, 3 and 5 months groups. Another 4 rabbits were used for control. All transected common peroneal nerves underwent epineural suture except for the degeneration group the electrophysiological examination was carried out at 1, 3 and 5 months postoperatively. Retrograde labelling of the anterior horn cells was demonstrated and the cells were observed under light and electronmicroscope. RESULTS 1. The number of labelled anterior horn cell in the spinal cord was 45% of the normal population after denervation for one year (P lt; 0.01). The number of labelled cells increased steadily from 48% to 57% and 68% of normal values at 1, 3 and 5 months following delayed nerve repair (P lt; 0.01). 2. The ultrastructure of the anterior horn cells of the recover gradually after repair. 3. With the progress of regeneration the latency become shortened, the conduction velocity was increased, the amplitude of action potential was increased. CONCLUSION Following delayed repair of injury of peripheral nerve, the morphology of anterior horn cells of spinal cord and electrophysiological display all revealed evidence of regeneration, thus the late repair of injury of peripheral nerve was valid.

    Release date:2016-09-01 11:05 Export PDF Favorites Scan
  • RESEARCH ADVANCE OF TREATMENT OF PERIPHERAL NERVE INJURY WITH NEUROMUSCULAR ELECTRICSTIMULATION

    Objective  To review researches of treatment of peripheral nerve injury with neuromuscular electrical stimulation (NMES) regarding mechanism, parameters, and cl inical appl ication at home and abroad. Methods The latest original l iterature concerning treatment of peri pheral nerve injury with NMES was extensively reviewed. Results NMES should be used under individual parameters and proper mode of stimulation at early stage of injury. It could promote nerve regeneration and prevent muscle atrophy. Conclusion NMES plays an important role in cl inical appl ication of treating peripheral nerve injury, and implantable stimulation will be the future.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • PERIPHERAL NERVE REGENERATION UNDER IMMUNOSUPPRESSION

    Objective To discuss peripheral nerve regeneration under immunosuppression. Methods Current research trends about relationship between peripheral nerve injury and immunoreaction, the experimental result of nerve regeneration after using various immunosuppressors, and the clinical findings after human allogenous hand transplantation were extensively reviewed. Results Peripheral nerve regeneration was accelerated under immunosuppression. Conclusion Peripheral nerve injury may induce immunoreaction, which inhibit nerve regeneration and function recovery.

    Release date: Export PDF Favorites Scan
  • EXPERIMENTAL STUDY OF PATHOPHYSIOLOGICAL CHANGES FOR PERIPHERAL NERVE AFTER NEUROLYSIS

    OBJECTIVE: To investigate the changes of regeneration and conduction function for peripheral nerve after neurolysis by nerve special staining and electrophysiology. METHODS: Sixty Sprague-Dawley male rats were randomly divided into four groups(n = 15), four methods were designed on rats models of sciatic nerve compression. There were simple decompression as group A, internal neurolysis after decompression as group B, lemithason(0.5 mg/kg) injected in the epineurium after decompression as group C, and lemithason(0.5 mg/kg) injected around the epineurium after decompression and internal neurolysis as group D. Motor nerve conduction velocity(MNCV) and motor latency (Lan) were monitored at 1,2,3,4,5 weeks after decompression, sections were regularly taken from the previously compressed area to perform morphometric analysis. RESULTS: After 2 weeks of decompression, the significant recovery were observed in both MNCV and Lan of four groups. Up to the 5th week of decompression, recovery of electrophysiology was significantly faster in group C and D than that of group A and B, particular in group C(P lt; 0.05), while group A compared with group B, there was no statistical difference in both MNCV and Lan(P gt; 0.05). Morphometric analysis showed that a lot of neural regeneration fibers were observed in group C and D after 3 weeks of decompression. CONCLUSION: Decompression can improve nerve conduction function significantly, while injection of lemithason in epineurium after decompression can promote the structure and function recovery of injured nerve.

    Release date:2016-09-01 10:28 Export PDF Favorites Scan
  • PERIPHERAL NERVE INJECTION IN JURY: A COMPARATIVE STUDY OF RESULTS BETWEEN EARLY INCISION OF EPINEURIUM WITH SALINE IRRI GATION AND LATE NEUROLYSIS

    A controversy still exists in the management of nerve injection injury. The results of different timing of operation and methods in treating this type of nerve injury were analysed in limb s function, neuroelectrophysiology and histology. The results showed that the recovery of the injuried nerve in the group of operation, was considerably better than that in the group without operation. In the group of operation early incision of the epineurium with saline irrigation! was superior to late neurolysis. It was suggested that the early incision with saline irrigation could be used as an emergency management for this type of nerve injury.

    Release date:2016-09-01 11:34 Export PDF Favorites Scan
  • KEY TECHNOLOGIES OF FUNCTIONAL FASCICULAR GROUPS THREE DIMENSIONAL VISUALIZATION OF LONG SEGMENTED PERIPHERAL NERVE BASED ON TWO-TIME IMAGING TECHNIQUE AND AUTOMATIC REGISTRATION

    Objective To explore and solve the key technologies of the three dimensional (3D) visual ization reconstruction of functional fascicular groups inside long segmented peri pheral nerve. Methods A 20 cm ulnar nerve from upper arm of fresh adult dead body was embedded by OCT with four pieces of woman’s hair which was used as locating material, then the samples were serially horizontally sl iced into 400 sl ices with 15 μm thickness and 0.5 mm interval. All sl iceswere stained with acetylcholinesterase (AchE) histochemical staining. After that, the 2D panorama images of the same sl ice were obtained with Olympus stereomicroscope and MSHOT MD90 micro figure image device before and after AchE staining. Using the layer processing technique of Photoshop image processing software, the recomposition images including complete 4 location pots were obtained, based on which the algorithm of optimized least square support vector machine (Optimized LS-SVM) and space transformation method was used to fulfill automatic registration. Finally, with artificial assistant outline obtaining, the 3D visual ization reconstruction model of functional fascicular groups of 20 cm ulnar nerve was made using Amira 4.1, and the effects of reverse reduction and the suitabil ity of 3D reconstruction software were evaluated. Results The two-time imaging technique based on the layer process of Photoshop image processing software had the advantages: the image outline had high goodness of fit; the locating pots of merging image was accurate; and the whole procedure was simple and fast. The algorithm of Optimized LS-SVM had high degree of accuracy, and the error rate was only 8.250%. The 3D reconstruction could display the changes of the chiastopic fusion of different nerve functional fascicular groups directly. It could extract alone, merge and combine arbitrarily, and revolve at any angles. Furthermore, the reverse reduction on arbitrarily level dissection of the 3D model was very accurately. Conclusion Based on the two-time imaging technique and computer image layer processing technology, the compute algorithm of auto-registration can be developed and appl ied to 3D visual ization reconstruction of long segmented peripheral nerve. The technological processes is fast, and the reconstruction effect is good.

    Release date:2016-08-31 05:47 Export PDF Favorites Scan
9 pages Previous 1 2 3 ... 9 Next

Format

Content