west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Peripheral nerve injury" 16 results
  • MORPHOLOGICAL CHANGES AND ELECTROPHYSIOLOGICAL STUDY OF MOTOR NEURON OF SPINAL CORD FOLLOWING DELAYED REPAIR OF PERIPHERAL NERVE INJURY

    OBJECTIVE Following the delayed repair of peripheral nerve injury, the cell number of anterior horn of the spinal cord and its ultrastructural changes, motorneuron and its electrophysiological changes were investigated. METHODS In 16 rabbits the common peroneal nerves of both sides being transected one year later were divided into four groups randomly: the degeneration group and regeneration of 1, 3 and 5 months groups. Another 4 rabbits were used for control. All transected common peroneal nerves underwent epineural suture except for the degeneration group the electrophysiological examination was carried out at 1, 3 and 5 months postoperatively. Retrograde labelling of the anterior horn cells was demonstrated and the cells were observed under light and electronmicroscope. RESULTS 1. The number of labelled anterior horn cell in the spinal cord was 45% of the normal population after denervation for one year (P lt; 0.01). The number of labelled cells increased steadily from 48% to 57% and 68% of normal values at 1, 3 and 5 months following delayed nerve repair (P lt; 0.01). 2. The ultrastructure of the anterior horn cells of the recover gradually after repair. 3. With the progress of regeneration the latency become shortened, the conduction velocity was increased, the amplitude of action potential was increased. CONCLUSION Following delayed repair of injury of peripheral nerve, the morphology of anterior horn cells of spinal cord and electrophysiological display all revealed evidence of regeneration, thus the late repair of injury of peripheral nerve was valid.

    Release date:2016-09-01 11:05 Export PDF Favorites Scan
  • STUDIES ON THE CHANGES OF MORPHOMETRY AND NEUROPEPTIDE OF SPINAL NEURONS AFTER PERIPHERAL NERVE INJURY

    To observe the change of morphology and neuropeptide in the spinal neurons in order to clarify the functional state after injury of peripheral nerves is especially in the late stage. Sciatic nerves were cut with their proximal segments in the preparation of a model of peripheral nerve injury. Combination of horseradish peroxidase retrograde tracing immunohistochemistry and computer image analysis the changes in the morphometry of the perikarya of ventral horn neurons of the spinal cord, the quantitative changes of substance P (SP). Calcitonin gene-related peptide (CGRP) in dorsal horn and CGRP and choline acetyransferase (CHAT) in ventral horn of the spinal cord were examed. The results showd: (1) At the 3rd week after injury, swollen perikarya of the ventral horn neurons were observed, subseauently the swelling of perikarya was decreased tile the 6th week the neurons recovered to their normal size. At the 12th week the neurons were generally stable in their size, shortening of the dendrites was seen in 27% of the neurons. (2) The dendrites of the neurons progressively contracted till at the 12th week 53% of them were degenerated. The results of the 24th week were similar to the that at the 12th week. (3) CGRP in the ventral horn of the spinal cord was elevated to the highest point after 1 week of injury, that lasting for 4 weeks and 8 weeks later, the lever of CGRP returned to normal. From 20th to 24th week, there was no obvious changes of CHAT in the ventral horn of the spinal cord during observation. (4) SP went to the lowest point in the dorsal horn during 2-6 weeks, then recovered slowly, and beiny normal again after 16 weeks, however, CGRP was changed slightly. The results indicated that although a series of degenerating changes occurred in the neurons of the spinal cord during the late peripheral nerve injury, but the functional activity of the central meurons still was maintained at a certain level.

    Release date:2016-09-01 11:07 Export PDF Favorites Scan
  • THE EMERGENT REPAIR OF PERIPHERAL NERVE INJURY OF THE WRIST

    OBJECTIVE To investigate the effect of the emergent repair of peripheral nerve injury of the wrist. METHODS From July 1993 to December 1997, 17 cases were admitted, which 21 injured peripheral nerves were repaired emergently. Among them, there were 11 cases of median nerve injury, 2 cases of ulnar nerve injury and 4 cases of median and ulnar nerve injury. All the nerves were ruptured completely except one which was partially ruptured. The emergent operation was taken and the injured nerves were repaired by microsurgical technique. RESULTS Followed up 6 to 18 months after operation, 95.25% injured nerves had good outcome. CONCLUSION Because of the specific structure of the wrist, nerve injury at this part need to be repaired emergently. It can enhance the regeneration of the injured nerve, preserve the function of the intrinsic muscle of hand, and decrease the local adhesion.

    Release date:2016-09-01 11:05 Export PDF Favorites Scan
  • EFFECT OF OLFACTORY ENSHEATHING CELLS TRANSPLANTATION ON PROTECTING SPINAL CORD AND NEURONS AFTER PERIPHERAL NERVE INJURY

    Objective To study the effect of olfactory ensheathingcells(OECs) transplantation on protecting spinal cord and neurons after peripheral nerve injury. Methods Fifty-five SD rats were randomly divided into blank group (n=5), experimental group (n=25) and control group (n=25). The right sciatic nerves of all the rats were transected. The proximal end was embedded in muscle and treated with OECs (experimental group) and DMEM (control group). No treatment was given to the blank group. The rats were sacrificed 1, 2, 3, 7, and 14 days after the transplantation, the related neurons were observed with histological and TUNEL methods. Results After sciatic nerves were transected, death of neurons occurred in spinal cord and ganglion. One, 2, 3 days after treatment, the neuron survival rate in experimental group was 98.4%±6.5%,97.6%±6.5%,95.2%±6.7% respectively. The neuron survival rate in control group was 97.8%±6.7%,97.4%±6.4%,94.3%±6.8% 1, 2, and 3 days after treatment respectively. There was no significant difference between experimental group and control group. Seven and 14 days after treatment, the neuron survival rate in experimental group was 92.4%±8.9%,87.7%±9.4% respectively. The neuron survival rate in control group was 87.4%±8.6%,83.4%±8.5% 7 and 14 days after treatment respectively. There was significant difference between experimental group and control group. On 1st and 2nd day, no apoptosis was seen in spinal cord anterior horn of the rats in both experimental group and control group. On 3rd, 7th, and 14th day, the apoptosis index of spinal cord anterior horn motoneuron in experimental rats were lower(1.2±0.8,1.4±0.6,4.1±1.3) than that in the control group(2.1±1.1,3.1±1.1,6.1±1.8)(Plt;0.05). One, 2, and 3 days after the operation, no ganglion neurons apoptosis was observed in all rats. On 7th day the apoptosis index of ganglion neurons in experimental group(2.10±0.32)were lower than thatin control group (4.40±0.56)(Plt;0.05). On 14th day there was no significant difference in the apoptosis index of ganglion neurons between experimental group (4.30±1.80)and control group(6.70±2.50)(P<0.05). Conclusion Apoptosis of neurons occur after peripheral nerve injury in spinal cord and ganglion. OECs transplantation is effective in preventing apoptosis.

    Release date:2016-09-01 09:28 Export PDF Favorites Scan
  • EFFECTS OF IMMUNOSUPPRESSANTS ON CYTOKINE EXPRESSIONS AFTER REPAIR FOR NERVE INJURY IN A RAT MODEL

    Objective To explore effects of several immunosuppressants on cytokine expressions after repair for a sciatic nerve injury in a rat model. Methods The sciatic nerves of 42 rats were cut and suturedend to end. After operation, the rats were divided into 6 groups. Group A(n=9) was served as a control with no medicines given. Group B (n=9) was given methylprednisolone 20 mg/(kg·d) for 2 days. Groups C(n=9) and D(n=3) were given FK506 1 mg/(kg·d) for 2 weeks and 4 weeks respectively, and were given the same doses of methylprednisolone as Group B. Groups E and F were given CsA 2 mg/(kg·d) for 2 weeks and 4 weeks respectively, and were given the same doses of methylprednisolone as Group B. The sciaticnerves were sampled at 1, 2 and 4 weeks postoperatively. And immuneohistochemistry stainings of interleukin 1β(IL-1β), tumor necrosis factor α(TNF-α), interferon γ(IFN-γ) and macrophage migration inhibitory factor(MIF) were performed. The staining results were compared and analyzed. Results The expression peaks of IL-1β and IFN-γ were found at the 1st week postoperatively in Group A. Then, the expression decreased rapidly at the 2nd week and disappeared at the 4th week. As for TNF-α and MIF, they were only found to have a low expression until the 1st week in Group A. In groups C-F, the expression peaks of IL-1β, TNF-α and IFN-γ were found at the 2nd week, while the expression peak of MIF was still at the 1st week, and the expression of all the cytokines extended to the 4th week. The expressions of these cytokines in Group B were just between the expression levels of Group A and Groups C-F. Conclusion Immunosuppressants can delay the expression peaks and significantly extend the expression time of IL-1β, TNF-α, IFN-γ and MIF after repair for a sciatic nerve injury in a rat model.

    Release date:2016-09-01 09:25 Export PDF Favorites Scan
  • Regulatory role of long non-coding RNA in peripheral nerve injury and neural regeneration

    ObjectiveTo summarize the regulatory role of long non-coding RNA (lncRNA) in peripheral nerve injury (PNI) and neural regeneration.MethodsThe characteristics and mechanisms of lncRNA were summarized and its regulatory role in PNI and neural regeneration were elaborated by referring to relevant domestic and foreign literature in recent years.ResultsNeuropathic pain and denervated muscle atrophy are common complications of PNI, affecting patients’ quality of life. Numerous lncRNAs are upregulated after PNI, which promote the progress of neuropathic pain by regulating nerve excitability and neuroinflammation. Several lncRNAs are found to promote the progress of denervated muscle atrophy. Importantly, peripheral nerve regeneration occurs after PNI. LncRNAs promote peripheral nerve regeneration through promoting neuronal axonal outgrowth and the proliferation and migration of Schwann cells.ConclusionAt present, the research on lncRNA regulating PNI and neural regeneration is still in its infancy. The specific mechanism remains to be further explored. How to achieve clinical translation of experimental results is also a major challenge for future research.

    Release date:2021-08-30 02:26 Export PDF Favorites Scan
  • CLINICAL SIGNIFICANCE OF CHANGES OF FIBRILLATION POTENTIAL AUPLITUDE FOLLOWING DENERVATION OF HUMAN SKELETAL MUSCLE

    To evaluate the value of clinical application of examination of fibrillation potential amplitude, 110 patients, 97 males and 13 females, were examined and only the maximum fibrillation potential amplitudes were recorded in 420 muscles. The results showed that there was no significant difference between sexes, ages and sides. However, significant difference was evident between the groups of different frequency (1+ to 4+). The fibrillation potential amplitude was maximum at 3 to 4 months after denervation and still remained at relatively high level for years in certain patients. No significant difference was showed between the time groups in incomplete nerve injuries. Surgery did not affect the course of fibrillation potential amplitude change. It was suggested that the muscle cells sustained their property for years after denervation in some patients, thus it might explain that satisfactory result could be obtained from operative repair in some late cases. The changes of fibrillation potential amplitude might indicate that the changes from muscle denervation was still reversible and might be more accurate than traditional method of examination.

    Release date:2016-09-01 11:07 Export PDF Favorites Scan
  • MONITORING RETROGRADE ADENOVIRAL TRANSGENE EXPRESSION IN SPINAL CORD AND ANTEROGRADE LABELING OF THE PERIPHERAL NERVES

    Objective Targeted adenoviral gene delivery from peripheral nerves was used to integrally analyse the characterization and time course of LacZ gene (AdLacZ) retrograde transfer to spinal cord and transgene product anterograde labeling ofperipheral nerve. Methods Recombinant replication-defective adenovirus containing AdLacZ was administrated to the cut proximal stumps of median and tibial nerves in Wister rats. Then the transected nerve was repaired with 10-0 nylon sutures. At different time point postinfection the spinal cords of C5 to T1 attached with DRGs and brachial plexuses, or L2 to L6 attached with DRGs and lumbosacralplexuses were removed. The removed spinal cord and DRGs were cut into 50 μm serialcoronal sections and processed for X-gal staining and immunohistochemical staining. The whole specimens of brachial or lumbosacral plexuses attaching with theirperipheral nerves were processed for X-gal staining. The number of X-gal stained neurons was counted and the initial detected time of retrograde labeling, peaktime and persisting period of gene expression in DRG sensory neurons, spinal cord motor neurons and peripheral nerves were studied. Results The gene transfer was specifically targeted to the particular segments of spinal cord andDRGs, and transgene expression was strictly unilaterally corresponding to the infected nerves. Within the same nerve models, the initial detected time of gene expression was earliest in DRG neurons, then in the motor neurons and latest in peripheral nerves. The persisting duration of β-gal staining was shortest in motor neurons, then in sensory neurons and longest in peripheral nerves. The initial detected time of β-gal staining in median nerve models was earlier in mediannerve models compared with that in the tibial nerve models. Although the initial detected time and the beginning of peak duration of β-gal staining were not same, the decreasing time of β-gal staining in motor and sensory neurons of thetwo nerve models were started at about the same day 8 post-infection. The labeled neurons were more in tibial nerve-models than that in median nerve models. Within the same models, the labeled sensory neurons of DRGs were morethan labeled motor neurons of ventral horn. The β-gal staining was tenser in median nerves than that in tibial nerves. However the persisting time of β-gal staining was longer in tibial nerve models. Conclusion The b gene expression in neurons and PNS renders this system particularly attractive for neuroanatomical tracing studies. Furthermore this gene delivery method allowing specific targeting of motor and sensory neurons without damaging the spinal cord might offer potentialities for the gene therapy of peripheral nerve injury.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON FUNCTIONAL REHABILITATION OF PERIPHERAL NERVE WITH ELECTRIC ACUPUNCTURE

    OBJECTIVE: To observe the functional rehabilitation of injured peripheral nerve with electric acupuncture. METHODS: Sciatic nerve injury model was established by transection of left sciatic nerve in 60 Wistar rats, which were randomly divided into two groups. The experimental group was treated with electroacupuncture, no treatment in the control group. Change of nerve electrophysiological, power of muscle and sciatic functional index (SFI) were observed. RESULTS: Nerve muscle-action potential (MAP) and motor nerve conduction velocity (MNCV) in the experimental group were better than that of the control group (P lt; 0.01). The single muscle twitch and tetanization of gastrocnemius muscle were higher in the experimental group too (P lt; 0.05). SFI were significantly higher in the experimental group (P lt; 0.05). CONCLUSION: Electric acupuncture therapy can improve functional rehabilitation of injured peripheral nerve.

    Release date:2016-09-01 10:21 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON NEURAL STEM CELL TRANSPLANTATION DELAYING DENERVATED MUSCLEATROPHY

    Objective To observe the delaying effect of neural stem cell (NSC) transplantation on denervated muscle atrophy after peri pheral nerve injury, and to investigate its mechanism. Methods NSCs were separated from the spinal cords of green fluorescent protein (GFP) transgenic rats aged 12-14 days mechanically and were cultured and induced to differentiate in vitro. Thirty-two F344 rats, aged 2 months and weighed (180 ± 20) g, were randomized into two groups (n=16 per group). The animal models of denervated musculus triceps surae were establ ished by transecting right tibial nerve and commom peroneal nerve 1.5 cm above the knee joints. In the experimental and the control group, 5 μL of GFP-NSCsuspension and 5 μL of culture supernatant were injected into the distal stump of the tibial nerve, respectivel. The generalcondition of rats after operation was observed. At 4 and 12 weeks postoperatively, the wet weight of right musculus tricepssurae was measured, the HE staining, the Mallory trichrome staining and the postsynaptic membrane staining were adopted for the histological observation. Meanwhile, the section area of gastrocnemius fiber and the area of postsynaptic membrane were detected by image analysis software and statistical analysis. Results The wounds in both groups of animals healed by first intension, no ulcer occurred in the right hind l imbs. At 4 and 12 weeks postoperatively, the wet weight of right musculus triceps surae was (0.849 ± 0.064) g and (0.596 ± 0.047) g in the experimental group, respectively, and was (0.651 ± 0.040) g and (0.298 ± 0.016) g in the control group, respectively, showing a significant difference (P lt; 0.05). The fiber section area of the gastrocnemius was 72.55% ± 8.12% and 58.96% ± 6.07% in the experimental group, respectively, and was 50.23% ± 4.76% and 33.63% ± 4.41% in the control group, respectively. There were significant differences between them (P lt; 0.05). Mallory trichrome staining of muscle notified that there was more collagen fiber hyperplasia of denervated gastrocnemius in the control group than that in the experimental group at 4 and 12 weeks postoperatively. After 12 weeks of operation, the area of postsynaptic membrane in the experimental group was (137.29 ± 29.14) μm2, which doubled that in the control group as (61.03 ± 11.38) μm2 and was closer to that in normal postsynaptic membrane as (198.63 ± 23.11) μm2, showing significant differences (P lt; 0.05). Conclusion The transplantation in vivo of allogenic embryonic spinal cord NSCs is capable of delaying denervated muscle atrophy and maintaining the normal appearance of postsynaptic membrane, providing a new approach to prevent and treat the denervated muscle atrophy cl inically.

    Release date:2016-09-01 09:17 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content