Abstract Precision medicine is an ideal medical paradigm which combines modern scientific methods with traditional medical methods to diagnose, treat and evaluate the physical function and nature of diseases more precisely, and to maximize health benefits and minimize the risk of individuals and society with the most effective, safest, and the most economical medical service. Evidence-based medicine is necessary to verify the precision of diagnosis and treatment. In this review, we clarified the conception of precision medicine and the relation between precision medicine and evidence-based medicine. Moreover, we reviewed the application of precision medicine in the field of cerebrovascular disease. We pointed out that such new technologies as genetics, bioinformatics, molecular imaging and management provided tools to realize the idea of precision medicine, and high-quality evidence-based studies provided a guarantee for the clinical practice of precision medicine. In summary, precision medicine is an individualized medical mode that based on the context of a patient's genetic information, living environment and clinical data, etc. to provide precise treatment strategies for the prevention and treatment of disease, but still the promotion of precision medicine should be based on clinical validation under the guidance of evidence-based medicine. Thus, long-term exploration and unremitting efforts are required to achieve the idea of precision medicine.
Objective To explore the predicted precision of discharged patients number using curve estimation combined with trend-season model. Methods Curve estimation and trend-season model were both applied, and the quarterly number of discharged patients of 363 hospital from 2009 to 2015 was collected and analyzed in order to predict discharged patients in 2016. Relative error between predicted value and actual number was also calculated. Results An optimal quadratic regression equation Yt=3 006.050 1+202.350 8×t–3.544 4×t2 was established (Coefficient of determination R2=0.927, P<0.001), and a total of 23 462 discharged patients were predicted based on this equation combined with trend-season model, with a relative error of 1.79% compared to the actual number. Conclusion The curve estimation combined with trend-season model is a convenient and visual tool for predicting analysis. It has a high predicted accuracy in predicting the number of hospital discharged patients or outpatients, which can provide a reference basis for hospital operation and management.
How to accurately identify factors of cancer occurrence and to provide intervention early are the key issues that urgently need to be addressed in cancer prevention and treatment. Mendelian randomization (MR) analysis uses genetic variants as instrument variables for exposures of interest, which compensates the shortcomings of traditional observational studies and clinical trials. This review introduced the current application status of MR analysis in cancer etiology and treatment researches in details, including assessment of cancer risk factors, exploration of cancer treatment targets, and evaluation of drug efficiency and adverse reactions. The scopes and dimensions of cancer etiology and treatment researches are greatly expanded because of various MR designs and abundant high-level omics data. As well, it provides a practical and feasible method for constructing cancer etiology networks and drug targeted databases, which are promising for supporting the development of precision cancer prevention and treatment.
Precision medicine is a personalized medical system based on patients' individual biological information, clinical symptoms and signs, forming a new clinical research model and medical practice path. The basic idea of traditional Chinese medicine and the concept of precision medicine share many similarities. The basket trial developed for precision medicine is also suitable for clinical trials and evaluation of the efficacy of traditional Chinese medicine syndrome differentiation and treatment systems. Basket trials are used to evaluate the efficacy of a drug in the treatment of multiple diseases or disease subtypes. It has the advantages of sharing a master protocol, unifying management of subsidiary studies, simplifying the test implementation process, unifying statistical analysis, saving resources, reducing budgets and accelerating the drug evaluation progress. This is similar to the concept of using the "same treatment for different diseases" found in traditional Chinese medicine. This paper introduced the concept and method of basket trials and explored their application and advantages in clinical research into traditional Chinese medicine. This study is expected to provide references for the methodological innovation of clinical research into traditional Chinese medicine.
Basing on development of medical model, new national diagnostic standard is interpreted according to three aspects: classification, diagnostic standard, and diagnostic contents. Tracheobronchial tuberculosis and tuberculous pleurisy are added into the classification. The value of molecular and pathological techniques for diagnosis of the pulmonary tuberculosis is emphasized. The status of drug-resistance is included in the diagnostic content. Two opinions are suggested: some practical methods such as diagnostic chemotherapy are indicated in some grassroots areas, while new molecular techniques for detection of DNA/RNA of mycobacteria and resistant mutation are encouraged in some suitable institutions.
Mixed reality technology is new digital holographic imaging technology that generates three-dimensional simulation images through computers and anchors the virtual images to the real world. Compared with traditional imaging diagnosis and treatment methods, mixed reality technology is more conducive to the advantages of precision medicine, helps to promote the development of medical clinical application, teaching and scientific research in the field of orthopedics, and will further promote the progress of clinical orthopedics toward standardization, digitization and precision. This article briefly introduces the mixed reality technology, reviews its application in the perioperative period, teaching and diagnosis and treatment standardization and dataization in the field of orthopedics, and discusses its technical advantages, aiming to provide a reference for the better use of mixed reality technology in orthopedics.
Precision poverty alleviation is the key task of China’s development, and its accuracy needs to be ensured in the implementation process. From the perspective of policy tools, this article defines the types of precision health poverty alleviation policy tools and explains the specific tools included in each type. Precision health poverty alleviation includes precision identification, precision implementation and precision assessment. This article also analyzes the selection of policy tools in different links. On this basis, combined with the choice of policy tools and the actual development of China, the problems in the application of different types of policy tools are summarized, and corresponding suggestions are put forward based on the existing problems. The purpose of this article is to providea reference for promoting the implementation of precision health poverty alleviation policies.
The "All of Us" research program is a research project supported by the National Institutes of Health. By recruiting over 1 million volunteers residing in the United States, the project builds a strong research resource to promote the exploration of biological, clinical, social, and environmental determinants of health and disease. This paper introduced the design plan of the "All of Us" research program systematically and provided information that can be used for the construction of a million natural population cohort of precision medicine in China.
West China Hospital of Sichuan University as a national-level regional medical center in the western part of the country, focused on the actual situation in Tibet and actively carried out precision health poverty alleviation work. Guided by " precision”, the hospital has built a close-knit medical association – Hospital of Tibet People’s Government in Chengdu Office, and through the comprehensive improvement of medical care, teaching, scientific research, and management, creates a medical and health service system with Tibet characteristics. Combining " blood transfusion” and " hematopoietic” to build a " West China Model” for precision health poverty alleviation, West China Hospital of Sichuan University fully demonstrates the public welfare and responsibility of a national-level regional medical center, and constantly exerts regional radiation and leading role, promotes the medical and health service system continuous improvement in Tibet.
The application of precision medicine in the field of tuberculosis is still in its infancy. The precision medicine of tuberculosis cannot be separated from the rapid and accurate diagnosis, the effective anti-tuberculosis drugs, and the comprehensive application of new cutting-edge technologies. In recent years, the precision medicine of tuberculosis has focused on drug-resistant tuberculosis, host-directed therapy and nano-targeted therapy, which has achieved certain results, providing an important mean for the treatment of tuberculosis, especially for the drug-resistant tuberculosis. In the future, the development of new drugs and the application of emerging technologies are the focus of precision medicine of tuberculosis. It is necessary to gradually carry out relevant clinical trial research and objectively evaluate its application value and prospects.