west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Prediction model" 21 results
  • Risk prediction models for the occurrence of low anterior resection syndrome in patients with rectal cancer after surgery: a systematic review

    ObjectiveTo systematically review the risk prediction models for the occurrence of low anterior resection syndrome in patients with rectal cancer after surgery. MethodsThe PubMed, Web of Science, Embase, Cochrane Library, Scopus, CINHAL, CNKI, CBM, WanFang Data and VIP databases were electronically searched to collect studies related to the objectives from inception to June 13, 2023. Two reviewers independently screened the literature, extracted data using the critical appraisal and data extraction for systematic reviews of prediction modelling studies (CHARMS) checklist, and assessed quality of the included studies using prediction model risk of bias assessment tool (PROBAST). ResultsA total of 14 studies were included, all studies reported model discrimination, and 10 studies reported calibration. The models were internally validated in 8 studies, externally validated in 5 studies. The most common predictors included in the models were tumour distance from the anal verge, neoadjuvant therapy, anastomotic leak and BMI. Only 5 studies had good overall applicability, and all studies had a high risk of bias, with the risk of bias mainly stemming from the field of participants, outcomes and analysis. ConclusionThere are still many shortcomings in the risk prediction models for the occurrence of low anterior resection syndrome in patients with rectal cancer after surgery. Future studies may consider external validation and recalibration of existing models. New prediction models should be built and validated according to methodological guidelines.

    Release date:2024-03-13 08:50 Export PDF Favorites Scan
  • Risk prediction models for gestational diabetes mellitus: a systematic review

    ObjectiveTo systematically review the research status of risk prediction models for gestational diabetes mellitus (GDM). MethodsThe CNKI, WanFang Data, VIP, CBM, PubMed, JBI EBP, Ovid MEDLINE, Embase, Web of Science and Cochrane Library databases were electronically searched to collect relevant literature on risk prediction models for GDM from inception to October 2022. Two researchers independently screened the literature, extracted data, and assessed the risk of bias of the included studies, and then qualitative description was performed. ResultsA total of 19 studies were included, involving 19 risk prediction models. The evaluation results showed that, in terms of the risk of bias, 18 studies were high risk, and 1 study was unclear. In terms of applicability, 14 studies were high risk, 2 studies were low risk, and 3 studies were unclear. The area under the receiver operating characteristic curve of the included models was 0.69 to 0.88. The most common predictors included age, weight, pre-pregnancy BMI, history of diabetes, family history of diabetes, and race. ConclusionThe overall performance of the risk prediction model for gestational diabetes mellitus is good, but the risk of bias of the model is high, and the clinical applicability of the model needs to be further verified.

    Release date:2023-12-16 08:39 Export PDF Favorites Scan
  • Construction and validation of a nomogram prediction model for the risk of pregnant women's fear of childbirth

    ObjectiveTo construct and verify the nomogram prediction model of pregnant women's fear of childbirth. MethodsA convenient sampling method was used to select 675 pregnant women in tertiary hospital in Tangshan City, Hebei Province from July to September 2022 as the modeling group, and 290 pregnant women in secondary hospital in Tangshan City from October to December 2022 as the verification group. The risk factors were determined by logistic regression analysis, and the nomogram was drawn by R 4.1.2 software. ResultsSix predictors were entered into the model: prenatal education, education level, depression, pregnancy complications, anxiety and preference for delivery mode. The areas under the ROC curves of the modeling group and the verification group were 0.834 and 0.806, respectively. The optimal critical values were 0.113 and 0.200, respectively, with sensitivities of 67.2% and 77.1%, the specificities were 87.3% and 74.0%, and the Jordan indices were 0.545 and 0.511, respectively. The calibration charts of the modeling group and the verification group showed that the coincidence degree between the actual curve and the ideal curve was good. The results of Hosmer-Lemeshow goodness of fit test were χ2=6.541 (P=0.685) and χ2=5.797 (P=0.760), and Brier scores were 0.096 and 0.117, respectively. DCA in modeling group and verification group showed that when the threshold probability of fear of childbirth were 0.00 to 0.70 and 0.00 to 0.70, it had clinical practical value. ConclusionThe nomogram model has good discrimination, calibration and clinical applicability, which can effectively predict the risk of pregnant women's fear of childbirth and provide references for early clinical identification of high-risk pregnant women and targeted intervention.

    Release date:2024-01-30 11:15 Export PDF Favorites Scan
  • Postpartum hemorrhage risk prediction models: a systematic review

    Objective To systematically review the performance of postpartum hemorrhage risk prediction models, and to provide references for the future construction and application of effective prediction models. Methods The CNKI, WanFang Data, VIP, CBM, PubMed, EMbase, The Cochrane Library, Web of Science, and CINAHL databases were electronically searched to identify studies reporting risk prediction models for postpartum hemorrhage from database inception to March 20th, 2022. Two reviewers independently screened the literature, extracted data, and assessed the risk of bias and applicability of the included studies. Results A total of 39 studies containing 58 postpartum hemorrhage risk prediction models were enrolled. The area under the curve of 49 models was over 0.7. All but one of the models had a high risk of bias. Conclusion Models for predicting postpartum hemorrhage risk have good predictive performance. Given the lack of internal and external validation, and the differences in study subjects and outcome indicators, the clinical value of the models needs to be further verified. Prospective cohort studies should be conducted using uniform predictor assessment methods and outcome indicators to develop effective prediction models that can be applied to a wider range of populations.

    Release date:2022-12-22 09:08 Export PDF Favorites Scan
  • Construction and validation of prediction model for diabetic distal symmetric polyneuropathy based on neural network

    ObjectiveTo construct a prediction model of diabetics distal symmetric polyneuropathy (DSPN) based on neural network algorithm and the characteristic data of traditional Chinese medicine and Western medicine. MethodsFrom the inpatients with diabetes in the First Affiliated Hospital of Anhui University of Chinese Medicine from 2017 to 2022, 4 071 cases with complete data were selected. The early warning model of DSPN was established by using neural network, and 49 indicators including general epidemiological data, laboratory examination, signs and symptoms of traditional Chinese medicine were included to analyze the potential risk factors of DSPN, and the weight values of variable features were sorted. Validation was performed using ten-fold crossover, and the model was measured by accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and AUC value. ResultsThe mean duration of diabetes in the DSPN group was about 4 years longer than that in the non-DSPN group (P<0.001). Compared with non-DSPN patients, DSPN patients had a significantly higher proportion of Chinese medicine symptoms and signs such as numbness of limb, limb pain, dizziness and palpitations, fatigue, thirst with desire to drink, dry mouth and throat, blurred vision, frequent urination, slow reaction, dull complexion, purple tongue, thready pulse and hesitant pulse (P<0.001). In this study, the DSPN neural network prediction model was established by integrating traditional Chinese and Western medicine feature data. The AUC of the model was 0.945 3, the accuracy was 87.68%, the sensitivity was 73.9%, the specificity was 92.7%, the positive predictive value was 78.7%, and the negative predictive value was 90.72%. ConclusionThe fusion of Chinese and Western medicine characteristic data has great clinical value for early diagnosis, and the established model has high accuracy and diagnostic efficacy, which can provide practical tools for DSPN screening and diagnosis in diabetic population.

    Release date:2024-03-13 08:50 Export PDF Favorites Scan
  • Mortaligy risk prediction models for acute type A aortic dissection: a systematic review

    ObjectiveTo systematically review mortality risk prediction models for acute type A aortic dissection (AAAD). MethodsPubMed, EMbase, Web of Science, CNKI, WanFang Data, VIP and CBM databases were electronically searched to collect studies of mortality risk prediction models for AAAD from inception to July 31th, 2021. Two reviewers independently screened literature, extracted data and assessed the risk of bias of included studies. Systematic review was then performed. ResultsA total of 19 studies were included, of which 15 developed prediction models. The performance of prediction models varied substantially (AUC were 0.56 to 0.92). Only 6 studies reported calibration statistics, and all models had high risk of bias. ConclusionsCurrent prediction models for mortality and prognosis of AAAD patients are suboptimal, and the performance of the models varies significantly. It is still essential to establish novel prediction models based on more comprehensive and accurate statistical methods, and to conduct internal and a large number of external validations.

    Release date:2021-12-21 02:23 Export PDF Favorites Scan
  • Methods and processes for producing a systematic review of predictive model studies

    As precision medicine continues to gain momentum, the number of predictive model studies is increasing. However, the quality of the methodology and reporting varies greatly, which limits the promotion and application of these models in clinical practice. Systematic reviews of prediction models draw conclusions by summarizing and evaluating the performance of such models in different settings and populations, thus promoting their application in practice. Although the number of systematic reviews of predictive model studies has increased in recent years, the methods used are still not standardized and the quality varies greatly. In this paper, we combine the latest advances in methodologies both domestically and abroad, and summarize the production methods and processes of a systematic review of prediction models. The aim of this study is to provide references for domestic scholars to produce systematic reviews of prediction models.

    Release date:2023-05-19 10:43 Export PDF Favorites Scan
  • Predictive model for the risk of postpartum depression: a systematic review

    ObjectiveTo systematically evaluate postpartum depression risk prediction models in order to provide references for the construction, application and optimization of related prediction models. MethodsThe CNKI, VIP, WanFang Data, PubMed, Web of Science and EMbase were electronically searched to collect studies on predictive model for the risk of postpartum from January 2013 to April 2023. Two reviewers independently screened the literature, extracted data, and assessed the quality of the included studies based on PROBAST tool. ResultsA total of 10 studies, each study with 1 optimal model were evaluated. Common predictors included prenatal depression, age, smoking history, thyroid hormones and other factors. The area under the curve of the model was greater than 0.7, and the overall applicability was general. Overall high risk of bias and average applicability, mainly due to insufficient number of events in the analysis domain for the response variable, improper handling of missing data, screening of predictors based on univariate analysis, lack of model performance assessment, and consideration of model overfitting. ConclusionThe model is still in the development stage. The included model has good predictive performance and can help early identify people with high incidence of postpartum depression. However, the overall applicability of the model needs to be strengthened, a large sample, multi-center prospective clinical study should be carried out to construct the optimal risk prediction model of PPD, in order to identify and prevent PPD as soon as possible.

    Release date:2023-08-14 10:51 Export PDF Favorites Scan
  • Predictive model for the risk of knee osteoarthritis: a systematic review

    ObjectiveTo systematically evaluate the risk prediction model of knee osteoarthritis (KOA). MethodsThe CNKI, WanFang Data, VIP, PubMed, Embase, Web of Science and Cochrane Library databases were electronically searched to collect relevant studies on KOA’s risk prediction model from inception to April, 2024. After study screening and data extraction by two independent researchers, the PROBAST bias risk assessment tool was used to evaluate the bias risk and applicability of the risk prediction model. ResultsA total of 12 studies involving 21 risk prediction models for KOA were included. The number of predictors ranged from 3 to 12, and the most common predictors were age, sex, and BMI. The range of modeling AUC included in the model was 0.554-0.948, and the range of testing AUC was 0.6-0.94. The overall predictive performance of the models was mediocre and the risk of overall bias was high, and more than half of the models were not externally verified. ConclusionAt present, the overall quality and applicability of the KOA morbidity risk prediction model still have great room for improvement. Future modeling should follow the CHARMS and PROBAST to reduce the risk of bias, explore the combination of multiple modeling methods, and strengthen the external verification of the model.

    Release date:2024-10-16 11:24 Export PDF Favorites Scan
  • Interpretation of checklist for transparent reporting of multivariable prediction models for individual prognosis or diagnosis tailored for systematic reviews and meta-analyses (TRIPOD-SRMA)

    Clinical prediction models typically utilize a combination of multiple variables to predict individual health outcomes. However, multiple prediction models for the same outcome often exist, making it challenging to determine the suitable model for guiding clinical practice. In recent years, an increasing number of studies have evaluated and summarized prediction models using the systematic review/meta-analysis method. However, they often report poorly on critical information. To enhance the reporting quality of systematic reviews/meta-analyses of prediction models, foreign scholars published the TRIPOD-SRMA reporting guideline in BMJ in March 2023. As the number of such systematic reviews/meta-analyses is increasing rapidly domestically, this paper interprets the reporting guideline with a published example. This study aims to assist domestic scholars in better understanding and applying this reporting guideline, ultimately improving the overall quality of relevant research.

    Release date:2024-01-30 11:15 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content