ObjectiveTo investigate the expression of tumor necrosis factor-α (TNF-α) in prostate cancer tissue and explore its relations with tumor angiogenesis. MethodsThe expression of TNF-α and CD105 were detected with two-step immunohistochemical staining technique in 20 cases of benign prostatic hyperplasia and 50 cases of prostate cancer between January 2010 and January 2012, and microvessel density (MVD) marked with CD105 was also measured. ResultsThe expressions of TNF-α and CD105 were higher in prostate cancer (41.72±8.67, 20.15±2.67) than those in benign prostatic hyperplasia (21.01±3.85, 4.34±1.67) (t'=13.990, P<0.001; t'=29.771, P<0.001). TNF-α and MVD were not correlated with age and size of tumor, but were positively correlated with tumor differentiation degree (rs=0.847, P<0.001; rs=0.776, P<0.001) and negatively correlated with clinical grades (rs=-0.769, P<0.001; rs=-0.842, P<0.001). ConclusionThe result indicates that over expression of TNF-α exists in prostate cancer. It may play an important role in the anginogenesis and carcinogenesis of prostate cancer.
Prostate cancer is a common disease in the USA and Europe, with a gradually increasing incidence in China, and presents a significant health burden for older men. The lack of modifiable risk factors has made early detection as a strategy to reduce mortality. Current methods of screening involve the measurement of serum prostate-specific antigen (PSA) and digital rectal examination followed by biopsy. With PSA screening evidence of level I absent, the evidence on the use of PSA as a screening test is still highly controversial. Furthermore, there is controversy over whether screen-detected lesions will become clinically significant. There are three major treatment options for localized disease: radical prostatectomy, radical radiotherapy and monitoring with treatment if required. There is no evidence of randomized controlled trial (RCT) to suggest a survival advantage of any of these treatments. Opinions about the related benefits and risks of screening vary widely. In the absence of RCT of benefit for screening, many now suggest “informed consensus” screening, which encourages a discussion between the patient and his physician with both sides informed of all of the issues.
ObjectiveTo assess whether hyperlipoidemia affects the occurrence and progression of prostate cancer (PCA). MethodsA hospital based retrospective study was carried out in Zhangzhou Affiliated Hospital of Fujian Medical University using data from a total of 112 cases of PCA, which underwent radical prostatectomy due to suspected PCA and confirmed by prostate biopsy pathology. ResultsOf the 112 PCA patients, 64 (57.14%) were PCA with hyperlipoidemia (PCA-H). Compared with PCA patients, the patients of PCA-H patients had younger onset age (65.0±5.0 vs. 67.8±3.7, P=0.001), increased prostate volume (75.0±11.7 mL vs. 54.5±8.5 mL, P < 0.001), increased level of TPSA (61.4±23.3 ng/mL vs. 33.4±14.9 ng/mL, P < 0.001), and Gleason grade (6.9±1.8 vs. 5.0±1.9, P < 0.001), later clinical stage (P < 0.001), shorter survival time (49.8±12.7 months vs. 57.3±6.2 months, P < 0.001) and decreased 5 years of survival rate (51.6% vs. 77.1%, P=0.006). The level of cholesterol, triglyceride and high density lipoprotein was significantly associated with the rejuvenation of onset age, the enlargement of prostate volume, increasing of serum TPSA, the progression of TNM clinical stage, increasing of Gleason grade, shorten of survival time and dropping of 5 years of survival rate (P < 0.05). In multiplefactor regression analysis, only hyperlipoidemia (OR=3.204, P=0.022) and Gleason grade (OR=8.611, P < 0.001) were the independent risk factors of prognosis. ConclusionThe situation of PCA with hyperlipoidemia is frequently noted in clinics, and hyperlipoidemia may be one of the risk factors in the processes of PCA growth and progression.
Image fusion currently plays an important role in the diagnosis of prostate cancer (PCa). Selecting and developing a good image fusion algorithm is the core task of achieving image fusion, which determines whether the fusion image obtained is of good quality and can meet the actual needs of clinical application. In recent years, it has become one of the research hotspots of medical image fusion. In order to make a comprehensive study on the methods of medical image fusion, this paper reviewed the relevant literature published at home and abroad in recent years. Image fusion technologies were classified, and image fusion algorithms were divided into traditional fusion algorithms and deep learning (DL) fusion algorithms. The principles and workflow of some algorithms were analyzed and compared, their advantages and disadvantages were summarized, and relevant medical image data sets were introduced. Finally, the future development trend of medical image fusion algorithm was prospected, and the development direction of medical image fusion technology for the diagnosis of prostate cancer and other major diseases was pointed out.
Objective To systemically review the efficacy and safety of strontium chloride for bone metastases from prostate cancer. Methods PubMed, The Cochrane Library, EMbase, VIP, CBM, CNKI and WanFang Data databases were electronically searched to collect randomized controlled trials (RCTs) about strontium chloride for bone metastases from prostate cancer from inception to November 2016. Two reviewers independently screened literature, extracted data and assessed the risk of bias of included studies, then, meta-analysis was performed by using RevMan 5.3 software. Results A total of 7 RCTs involving 1 532 patients were included. The results of meta-analysis showed that strontium chloride was superior to placebo in the rate of pain relief (RR=1.79, 95%CI 1.35 to 2.37, P<0.000 1), but more likely to cause slight leucopenia (Peto OR=5.02, 95%CI 1.49 to 16.95,P=0.009). However, no significant difference was found in overall survival time between two groups (RR=0.87, 95%CI 0.58 to 1.30, P=0.49). In addition, strontium chloride was superior to radiotherapy in rate of bone pain relief (RR=1.28, 95%CI 1.12 to 1.47, P=0.0004), but it would cause thrombocy (Peto OR=2.61, 95%CI 1.04 to 6.57, P=0.04). Conclusion Current evidence shows that the strontium chloride is superior to placebo in the rate of pain relief, but it will cause slight leucopenia. The strontium chloride is superior to radiotherapy in rate of bone pain relief. Due to limited quality and quantity of the included studies, more high quality studies are needed to verify the above conclusion.
ObjectiveTo compare the effectiveness of T2 weighted image (T2WI) and some compounded MRI techniques, including T2WI combined with magnetic resonance spectroscopy (T2WI+MRS), T2WI combined with diffusion weighted imaging (T2WI+DWI) and T2WI combined with dynamic contrast-enhancement [T2WI+(DCE-MRI)] respectively, with 1.5 T MR scanner in diagnosing prostate cancer through a blinding method. MethodsBetween March 2011 and April 2013, two observers diagnosed 59 cases with a blinding method. The research direction of radiologist A was to diagnose prostate cancer. The observers diagnosed and scored the cases with T2WI, T2WI+(DCE-MRI), T2WI+MRS, T2WI+DWI and compositive method respectively. The data were statistically analyzed with receiver operating characteristic (ROC) curve. ResultsAccording to the ROC curve, both observers got the sequence of area under curve (AUC) as T2WI+DWI > T2WI+(DCE-MRI) > T2WI+MRS > T2WI. On the basis of the result from observer A, the AUC from each technique was similar. The AUC of T2+DWI was slightly bigger than others. The specificity of single T2WI was the lowest; the sensitivity of T2WI was slightly higher. The AUC of the compositive method was marginally larger than T2WI+DWI. According to the result from observer B, the AUC of T2WI+DWI was obviously larger than the others. The AUC of single T2WI was much smaller than the other techniques. The single T2WI method had the lowest sensitivity and the highest specificity. The AUC of T2WI+DWI was slightly larger than the compositive method. The AUC of T2WI+(DCE-MRI), T2WI+MRS, single T2WI methods from observer A was obviously higher than those from the score of observer B. The AUC of T2WI+DWI from the two observers was similar. ConclusionThe method of combined T2WI and functional imaging sequences can improve the diagnosing specificity when a 1.5 T MR scanner is used. T2WI+DWI is the best method in diagnosing prostate cancer with least influence from the experience of observers in this research. The compositive method can improve the diagnosis of prostate cancer effectively, but when there are contradictions between different methods, the T2WI+DWI should be considered as a key factor.
Prostate cancer ranks second among the causes of death of malignant tumors in middle-aged and elderly men. A considerable number of patients are not easily detected in early-stage prostate cancer. Although traditional imaging examinations are of high value in the diagnosis and staging of prostate cancer, they also have certain limitations. With the development of nuclear medicine instruments and molecular probes, molecular imaging is playing an increasingly important role in the diagnosis and treatment of prostate cancer. Positron emission tomography and computed tomography (PET/CT) using prostate-specific membrane antigen (PSMA) as a probe has gained increasing recognition. This article will review the latest progress in the application of PET/CT using probes for targeting PSMA to imaging and treatment of prostate cancer, in order to provide a theoretical basis for the application of probes for targeting PSMA in the diagnosis and treatment of prostate cancer.
The incidence of prostate cancer ranks the second in malignant tumors among elderly males. Multi-parametric MRI (Mp-MRI) is an important mean for detection, staging, and grading of prostate cancer. In order to standardize the collection, interpretation, and reporting of prostate MRI data, the European Urogenital Radiology Society launched the Prostate Imaging Reporting and Data System (PI-RADS) in 2012. Due to some limitations in the application process, the Joint Committee of the American Society of Radiology and the European Society of Radiology issued an updated version of PI-PADS V2 in 2014. In recent years, some studies have been carried out on the effectiveness, accuracy, and consistency of the diagnosis of prostate cancer. This article will review the application and research status of PI-RADS V2 system in the diagnosis of Mp-MRI for prostate cancer.
Prostate cancer is the most common malignant tumor in male urinary system, and the morbidity and mortality rate are increasing year by year. Traditional imaging examinations have some limitations in the diagnosis of prostate cancer, and the advent of molecular imaging probes and imaging technology have provided new ideas for the integration of diagnosis and treatment of prostate cancer. In recent years, prostate-specific membrane antigen (PSMA) has attracted much attention as a target for imaging and treatment of prostate cancer. PSMA ligand positron emission tomography (PET) has important reference value in the diagnosis, initial staging, detection of biochemical recurrence and metastasis, clinical decision-making guidance and efficacy evaluation of prostate cancer. This article briefly reviews the clinical research and application progress on PSMA ligand PET imaging in prostate cancer in recent years, so as to raise the efficiency of clinical applications.