west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Pulmonary nodule" 48 results
  • Short-term efficacy of CT-guided microwave ablation for solitary pulmonary nodules

    ObjectiveTo evaluate the clinical feasibility and safety of CT-guided percutaneous microwave ablation for peripheral solitary pulmonary nodules.MethodsThe imaging and clinical data of 33 patients with pulmonary nodule less than 3 cm in diameter treated by CT-guided microwave ablation treatment (PMAT) in our hospital from July 2018 to December 2019 were retrospectively analyzed. There were 21 males and 12 females aged 38-90 (67.6±13.4) years. Among them, 26 patients were confirmed with lung cancer by biopsy and 7 patients were clinically considered as partial malignant lesions. The average diameter of 33 nodules was 0.6-3.0 (1.8±0.6) cm. The 3- and 6-month follow-up CT was performed to evaluate the therapy method by comparing the diameter and enhancement degree of lesions with 1-month CT manifestation. Short-term treatment analysis including complete response (CR), partial response (PR), stable disease (SD) and progressive disease (PD) was calculated according to the WHO modified response evaluation criteria in solid tumor (mRECIST) for short-term efficacy evaluation. Eventually the result of response rate (RR) was calculated. Progression-free survival was obtained by Kaplan–Meier analysis.ResultsCT-guided percutaneous microwave ablation was successfully conducted in all patients. Three patients suffered slight pneumothorax. There were 18 (54.5%) patients who achieved CR, 9 (27.3%) patients PR, 4 (12.1%) patients SD and 2 (6.1%) patients PD. The short-term follow-up effective rate was 81.8%. Logistic analysis demonstrated that primary and metastatic pulmonary nodules had no difference in progression-free time (log-rank P=0.624).ConclusionPMAT is of high success rate for the treatment of solitary pulmonary nodules without severe complications, which can be used as an effective alternative treatment for nonsurgical candidates.

    Release date:2021-07-28 10:22 Export PDF Favorites Scan
  • Clinical application of three-dimensional computed tomography bronchography and angiography in robotic lung segmentectomy

    ObjectiveTo explore the clinical value of three-dimensional computed tomography bronchography and angiography (3D-CTBA) in robotic lung segmentectomy.MethodsA non-randomized control study was performed and continuously enrolled 122 patients who underwent robotic lung segmentectomy in our hospital from January 2019 to January 2020. 3D-CTBA was performed before operations in 53 patients [a 3D-CTBA group, including 18 males, 35 females, with a median age of 52 (26-69) years] and not performed in the other 69 patients [a traditional group, including 23 males, 46 females, with a median age of 48 (30-76) years]. The clinical data of the patients were compared between the two groups.ResultsAll the patients were successfully completed the surgery and recovered from hospital, with no perioperative death. The baseline characteristics of the patients were not significantly different between the two groups (P>0.05). No significant difference was found in the operative time [120 (70-185) min vs. 120 (45-225) min, P=0.801], blood loss [50 (20-300) mL vs. 30 (20-400) mL, P=0.778], complications rate (17.0% vs. 11.6%, P=0.162), postoperative hospital stay [7 (4-19) d vs. 7 (3-20) d, P=0.388] between the two groups. In the 3D-CTBA group, 5 (9.4%) patients did not find nodules after segmentectomy, and only 1 (1.9%) of them needed lobectomy, but in the traditional group, 8 (11.6%) patients did not find nodules and had to carry out lobectomy, the difference was statistically significant (P<0.05). The follow-up time was 10 (1-26) months, and during this period, there was no recurrence, metastasis or death in the two groups.Conclusion3D-CTBA is helpful for accurate localization of nodules and reasonable surgical planning before operations, and reducing wrong resections in segmentectomy, without increasing the operation time, blood loss and complications. It is safe and effective in anatomical lung segmentectomy.

    Release date:2020-10-30 03:08 Export PDF Favorites Scan
  • Analysis of the frontier and hotspot of screening technology for early lung cancer based on bibliometrics

    ObjectiveTo reveal and demonstrate the hotspots and further research directions in screening technology for early lung cancer, and provide references for the future studies. MethodsResearches related to lung cancer screening from 2011 to 2021 in the Web of Science database were included. Biblioshiny, a bibliometrics program based on R language, was used to perform content analysis and visualization of the included literature information. ResultsResearches related to lung cancer screening were increasing year by year. Six major cooperation groups were formed between countries. The current research hotspots in the field of early lung cancer screening technology mainly focused on the multi-directional fusion of radiographic imaging, liquid biopsy and artificial intelligence. ConclusionLow-dose spiral CT screening is still the most important and mainstream method for the screening of early lung cancer at present. The combination and integration of artificial intelligence with various screening methods and the innovation of novel testing and diagnostic equipment are the current research hotspots and the future research trend in this field.

    Release date:2022-11-22 02:01 Export PDF Favorites Scan
  • Research on pulmonary nodule recognition algorithm based on micro-variation amplification

    Objective To develop an innovative recognition algorithm that aids physicians in the identification of pulmonary nodules. MethodsPatients with pulmonary nodules who underwent thoracoscopic surgery at the Department of Thoracic Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School in December 2023, were enrolled in the study. Chest surface exploration data were collected at a rate of 60 frames per second and a resolution of 1 920×1 080. Frame images were saved at regular intervals for subsequent block processing. An algorithm database for lung nodule recognition was developed using the collected data. ResultsA total of 16 patients were enrolled, including 9 males and 7 females, with an average age of (54.9±14.9) years. In the optimized multi-topology convolutional network model, the test results demonstrated an accuracy rate of 94.39% for recognition tasks. Furthermore, the integration of micro-variation amplification technology into the convolutional network model enhanced the accuracy of lung nodule identification to 96.90%. A comprehensive evaluation of the performance of these two models yielded an overall recognition accuracy of 95.59%. Based on these findings, we conclude that the proposed network model is well-suited for the task of lung nodule recognition, with the convolutional network incorporating micro-variation amplification technology exhibiting superior accuracy. Conclusion Compared to traditional methods, our proposed technique significantly enhances the accuracy of lung nodule identification and localization, aiding surgeons in locating lung nodules during thoracoscopic surgery.

    Release date:2025-02-28 06:45 Export PDF Favorites Scan
  • The efficiency of Ki-67 expression and CT imaging features in predicting the degree of lung adenocarcinoma invasion

    ObjectiveTo explore the efficiency of Ki-67 expression and CT imaging features in predicting the degree of invasion of lung adenocarcinoma. MethodsThe clinical data of 217 patients with pulmonary nodules, who were diagnosed as suspicious lung cancer by multi-disciplinary treatment clinic of pulmonary nodules in our hospital from September 2017 to August 2021, were retrospectively analyzed. There were 84 males and 133 females, aged 52 (25-84) years. The patients were divided into two groups according to the infiltration degree, including an adenocarcinoma in situ and microinvasive adenocarcinoma group (n=145) and an invasive adenocarcinoma group (n=72). ResultsThere was no statistical difference in the age and gender between the two groups (P>0.05). The univariate analysis showed that CK-7, P63, P40 and CK56 expressions were not different between the two groups (P=0.172, 0.468, 0.827, 0.313), while Napsin A, TTF-1 and Ki-67 expressions were statistically different (P=0.002, 0.020, <0.001). The multivariate analysis showed that Ki-67 expression was statistically different between the two groups (P<0.001). Ki-67 was positively correlated with malignant features of CT images and the degree of lung adenocarcinoma invasion (P<0.05). Ki-67 and CT imaging features alone could predict the degree of lung adenocarcinoma invasion, but their sensitivity and specificity were not high. Ki-67 combined with CT imaging features could achieve a higher prediction efficiency.ConclusionCompared with Ki-67 or CT imaging features alone, the combined prediction of Ki-67 and imaging features is more effective, which is of great significance for clinicians to select the appropriate operation occasion.

    Release date:2022-10-26 01:37 Export PDF Favorites Scan
  • Application of 3D Digital Lung Software in Preoperative Planning of Patients with Mul-tiple Pulmonary Nodules and Poor Pulmonary Function

    ObjectiveTo assess the feasibility of 3D digital lung software used in preoperative planning of patients with multiple pulmonary nodules and poor pulmonary function. MethodsFive patients with multiple pulmonary nodules in the left lung, meanwhile with a history of single lung lobectomy in the right lung were included in our hospital between June and December 2015. There were 4 males and 1 female at an average age of 50.4±2.6 years. A 320-slice volumetric CT scanner was used to the CT angiography (CTA) of the pulmonary artery. The data of CT images were imported into the 3D digital lung software that was researched and developed by Xiamen QiangBen Science and Technology Company. The 3D reconstruction of digital virtual lung was completed by this software based on those data. At the same time the soft-ware completed the automatic segmentation of the lung based on the pulmonary artery system and the 3D reconstruction of the pulmonary nodules. The 3D digital lung software calculated the volume proportion of the intended removal (segm-ental lesions) to the whole lung, estimated the effect of surgery on forced expired volume in one second (FEV1), and the patient's tolerance ability to surgery. After the preoperative planning, the patients received multiple pulmonary segmental/subsegmental resection under the general anesthesia by video-assisted thoracoscopic surgery (VATS). ResultsThe 3d reconstruction of the pulmonary arteries reached 5 levels in 5 patients. And the software automatically identified out the lung segment/subsegment to show the lung nodules of lung segment/subsegment. The preselection lung volume of 5 patients accounted for 14.00%-27.00% of total lung volume. The software estimated FEV1 as 1.16-1.46 L which can tolerate the operation. The 5 patients were successfully performed surgery of multiple pulmonary segmental/subsegmental resection under the general anesthesia by VATS. The software located lung nodules from the resection of pulmonary segments during operation immediately. Then we sent them to the rapid pathological examination for diagnosis. After operation, the patients recovered well, and had no respiratory insufficiency. Hospitalization day was 4 days. ConclusionThe 3D digital pulmonary software can not only automatically identify the pulmonary segments, precisely position the pulmonary nodule, show the relationship among the target pulmonary segments artery, vein, bronchus and the surroun-ding artery, vein, and bronchus, but also calculate the volume of the pulmonary segments, estimate the impact of the pulmonary segmentectomy on the FEV1. It is useful for precise evaluation of the tolerant capacity of multiple pulmonary nodules in patients with unstaged multiple pulmonary segments.

    Release date:2016-11-04 06:36 Export PDF Favorites Scan
  • A nomogram model for predicting risk of lung adenocarcinoma by FUT7 methylation combined with CT imaging features

    Objective The management of pulmonary nodules is a common clinical problem, and this study constructed a nomogram model based on FUT7 methylation combined with CT imaging features to predict the risk of adenocarcinoma in patients with pulmonary nodules. Methods The clinical data of 219 patients with pulmonary nodules diagnosed by histopathology at the First Affiliated Hospital of Zhengzhou University from 2021 to 2022 were retrospectively analyzed. The FUT7 methylation level in peripheral blood were detected, and the patients were randomly divided into training set (n=154) and validation set (n=65) according to proportion of 7:3. They were divided into a lung adenocarcinoma group and a benign nodule group according to pathological results. Single-factor analysis and multi-factor logistic regression analysis were used to construct a prediction model in the training set and verified in the validation set. The receiver operating characteristic (ROC) curve was used to evaluate the discrimination of the model, the calibration curve was used to evaluate the consistency of the model, and the clinical decision curve analysis (DCA) was used to evaluate the clinical application value of the model. The applicability of the model was further evaluated in the subgroup of high-risk CT signs (located in the upper lobe, vascular sign, and pleural sign). Results Multivariate logistic regression analysis showed that female, age, FUT7_CpG_4, FUT7_CpG_6, sub-solid nodules, lobular sign and burr sign were independent risk factors for lung adenocarcinoma (P<0.05). A column-line graph prediction model was constructed based on the results of the multifactorial analysis, and the area under the ROC curve was 0.925 (95%CI 0.877 - 0.972 ), and the maximum approximate entry index corresponded to a critical value of 0.562, at which time the sensitivity was 89.25%, the specificity was 86.89%, the positive predictive value was 91.21%, and the negative predictive value was 84.13%. The calibration plot predicted the risk of adenocarcinoma of pulmonary nodules was highly consistent with the risk of actual occurrence. The DCA curve showed a good clinical net benefit value when the threshold probability of the model was 0.02 - 0.80, which showed a good clinical net benefit value. In the upper lobe, vascular sign and pleural sign groups, the area under the ROC curve was 0.903 (95%CI 0.847 - 0.959), 0.897 (95%CI 0.848 - 0.945), and 0.894 (95%CI 0.831 - 0.956). Conclusions This study developed a nomogram model to predict the risk of lung adenocarcinoma in patients with pulmonary nodules. The nomogram has high predictive performance and clinical application value, and can provide a theoretical basis for the diagnosis and subsequent clinical management of pulmonary nodules.

    Release date: Export PDF Favorites Scan
  • Effects of fine management on patients undergoing video-assisted thoracoscopic surgery for pulmonary nodule in day surgery mode

    ObjectiveTo explore the effect of perioperative fine management on patients undergoing video-assisted thoracoscopic surgery (VATS) for pulmonary nodule in day surgery mode.MethodsWe retrospectively analyzed the data of patients undergoing VATS for pulmonary nodule in Day Surgery Center of West China Hospital, Sichuan University between June 2019 and October 2020. The number of VATS procedures and general data of patients were collected. The effects of fine management on postoperative intrathoracic drain management, pain management, and diet management, as well as the postoperative follow-up and satisfaction survey were analyzed.ResultsA total of 162 patients were enrolled. The duration of postoperative chest drainage of 150 VATS patients who discharged from the hospital with normal extubation lasted for 5 to 22 h with an average of (10.88±3.54) h. Univariate analyses and multivariate logistic regression analysis showed that gender, age, method of surgery, and immediate postoperative pain score were not associated with delayed removal of thoracic drainage tube (>10 h) (P>0.05). The lowest score of numerical rating scale for pain intensity was 0 (painless) and the highest was 4 (moderate pain). After surgery, 12 patients (7.4%) were transferred out of the day surgery department, 2 patients (1.2%) were indwelled postoperative urinary catheter, 11 patients (6.8%) had unplanned revisit, and 6 patients (3.7%) had unplanned readmission. Patient satisfaction surveys were all satisfactory.ConclusionsThe implementation of fine management in VATS for pulmonary nodule in day surgery mode is beneficial for ensuring that patients can remove the drainage tube before discharge from the hospital, without severe pain after the operation and with good follow-up satisfaction.

    Release date:2021-03-19 01:22 Export PDF Favorites Scan
  • A single-center retrospective analysis of surgical strategy and clinical outcome of pulmonary nodules using pulmonary subsegments as anatomical unit

    ObjectiveTo analyze the results and rationality of the lesion-focused strategy with subsegment as the pulmonary anatomical unit for pulmonary nodules with a diameter of ≤2 cm which require surgery. MethodsClinical data of 246 patients with pulmonary nodules who underwent surgery in the Department of Thoracic Surgery of The First Affiliated Hospital of Nanjing Medical University from January 2017 to October 2018 were retrospectively analyzed, including 76 males and 170 females, with an average age of 53.30±11.82 years. The patients were divided into four groups, a single segmentectomy group, a segmentectomy combined with adjacent subsegmentectomy group, a single subsegmentectomy group and a combined subsegmentectomy group, according to the different surgical approaches, to compare preoperative, intraoperative, and postoperative related data. ResultsThere was no perioperative death. Among the four groups, there was no statistical difference in gender (P=0.163), age (P=0.691), diameter of the nodule (P=0.743), longitudinal position of the nodule (depth ratio, P=0.831), postoperative pulmonary leakage (P=0.752), intraoperative blood loss (P=0.135), pathological type (P=0.951) or TNM stage (P=0.995); there were statistical differences in transverse position of the nodule (P<0.001) and number of subsegments involved (P<0.001). The results of multivariate logistic regression analysis showed that compared with combined subsegmentectomy, the odds ratio (OR) of the lung nodule in segmentectomy combined with adjacent subsegmentectomy as intersegment nodules was 5.759 (95%CI 1.162 to 28.539, P=0.032).Conclusion The surgical strategy of lesion focused and subsegment as anatomical unit is safe and feasible for surgical treatment of pulmonary nodules with diameter ≤2 cm. The transverse position of the nodules is an important factor affecting the choice of surgical method for the middle and lateral nodules with a diameter of ≤2 cm, and the longitudinal location of the nodule is not an influencing factor. For nodules in inner zone, the diameter also is one of the factors influencing the choice of surgical method.

    Release date:2022-01-21 01:31 Export PDF Favorites Scan
  • Study of the correlation between CT image quality and radiation doses of lung nodules with different scanning parameters

    ObjectivesTo investigate the influence of scanning parameters (tube voltages and tube currents) on image quality and corresponding radiation doses with simulated lung nodules in chest CT.MethodsThe anthropomorphic chest phantoms with 12 simulated, randomly placed nodules of different diameters and densities in the chest were scanned by different scanning parameters. The detection rate, degree of nodular deformation, image quality (with both subjective and objective evaluation) and the corresponding radiation doses were recorded and evaluated, and the correlation between nodule detection rate, degree of nodular deformation, radiation dose and image quality using different scanning parameters was analyzed.ResultsThe image quality improved with the increase of tube voltage and tube current (P<0.05). When the tube current was constant, the CT values of the vertebral decreased gradually with the increase of tube voltages (P<0.05); however, significant difference was not detected in CT values of the lung field (P>0.05). When the tube current was 100 mAs, the lung nodules with CT values of +100 HU and −630 HU showed statistical difference when using different tube voltage (P<0.05); but there was no significant difference in nodules of −800 HU (P=0.57). When tube voltage was 100 kV and 120 kV each, it was possible to detect all lung nodules with a detection rate of 100%. The detection rate was 33% and 66% in 3 mm diameter when the tube current was 80 kV/15 mA and 80 kV/20 mA, respectively. The nodules deformation in nodules with a CT value of −630 HU and diameter less than 5 mm was the most prominent (P<0.05). After analyzing the relationship between image quality and radiation doses using different tube voltages, we established a system of correlation equations: 80 kV: Y=2.625X+0.038; 100 kV: Y=14.66X+0.158; 120 kV: Y=18.59X+0.093.ConclusionsThe image quality improves with the increase of tube current and tube voltage, as well as the corresponding radiation doses. By reducing the tube voltage and increasing the tube current appropriately, the radiation doses can be reduced. Follow-up CT examination of pulmonary ground glass nodules should apply the same tube voltage imaging parameters, so as to effectively reduce the measurement error of nodule density and evaluate the change of nodules more accurately.

    Release date:2019-11-19 10:03 Export PDF Favorites Scan
5 pages Previous 1 2 3 4 5 Next

Format

Content