Objective To observe whether theograde axial flow of retinal ganglion cells (RGC) in diabetic rats at the early stage was damaged. Methods Diabetic model was induced by streptozotocin in 6 adult male Sprague-Dawley (SD)rats. Fluorogold (FG) was injected to the superior colliculi 4 weeks later.Streched preparation of retina was made 12 and 72 hours after the injection, and was stained after photographed by fluorescent microscope. The proportion of RGC with different sizes labeled by FG was calculated. Other 6 normal adult male SD rats were in the control group. Results Twelve hours after injection with FG, there was no difference of the total number of RGC in experimental and control group, but the ratio of small RGC was lower in experimental group than that in the control group; 72 hours after injection with FG, The number of RGC, especially the small RGC, decreased obviously in experimental group compared with the control group. Conclusion The speed of the retrograde axial flow of RGC in diabetic rats at the early stage is affected, and the small RGC are damageable. (Chin J Ocul Fundus Dis, 2006, 22: 4-6)
Objective To study the effects of several neurotrophic factors and growth factors on the survival of human retinal ganglion cells(RGC)in vitro. Methods RGC were isolated from donor eyes and cultured.RGC in cell culture were identified by morphologic criteria and immunocytochemical staining.Various neurotrophic factors and growth factors were added individually to the cultures.Numbers of RGC in wells in which these agents had been added were compared with those from control wells(cultures without supplements). Results No or very few RGC were present in cell cultures containing medium without supplements or those supplemented with neurotrophin-3(NT-3),nerve growth factor (NGF),epidermal growth factor(EGF)amd plateletderived growth factor(PDGF).Numbers of RGC(per 10 fields)in cell cultures containing brain derived neurotrophic factor(BDNF),ciliary neurotrophic factor(CNTF),neurotrophin-4/5(NT-4/5)and basic fibroblast growth factor(bFGF)wer 4.08,1.23,2.63 and 2.65,respectively,significantly more than found in the control cultures. Conclusions BDNF,NT-4/5,bFGF,CNTF improve survival of human RGC in vitro,while NGF,NT-3,EGF and PDGF do not. (Chin J Ocul Fundus Dis, 1999, 15: 149-152)
Objective:To observe the protective effect of ginkgo bilo ba extrac t (EGb 761), a free radical scavenger, on the photoreceptor cells after lighti nduced retinal damage. Methods:Seventytwo female SpragueDa wley (SD) rats we re randomly divided into 4 groups: normal control group, lightinduced retinal da m age model group, model+physiological saline group, and model+EGb 761 group, with 18 rats in each group. All of the rats except the ones in the control group were exposed to white light at (2740plusmn;120) lx for 6 hours after the dark adap tation for 24 hours to set up the lightinduced retinal damage model. Rats in m o del + physiological saline group and model+EGb 761 group were intraperitoneall y injected daily with physiological saline and 0.35% EGb 761 (100 mg/kg), respec tively 7 days before and 14 days after the light exposure. Apoptosis of photorec eptor cells was detected 4 days after light exposure; 7 and 14 days after light exposure, histopathological examination was performed and the layer number of ou ter nuclear layers (ONL) on the superior and inferior retina was counted. Results:Four days after light exposure, the apoptosis of photorecep tor cells was fou nd on ONL in model, model+ physiological saline and model+EGb 761 group, and w as obviously less in model + EGb 761 group than in model and model+physiologic al saline group. Seven days after light exposure, the layers of ONL on the super ior retina were 3 to 4 in model and model+physiological saline group, and 7 to 8 in model+EGb 761 group; the mean of the layer number of ONL in model+EGb 761 group (6.92plusmn;0.82) was less than that in normal control group (8.40plusmn;0.95) (t=-1.416, P<0.05), but significantly more than that in model (5.96 plusmn;1.36 ) and model+physiological saline group (5.90plusmn;1.40)(t=1.024, 1.084; P<0.05). Fourteen days after light exposure, the layers of ONL on the superior retina were 0 to 1 in model and model+physiological saline group, and 3 to 4 i n model+EGb 761 group. The mean of the layer number of ONL in model+EGb 761 group (5.5 2plusmn;1.06) was significantly more than that in model (3.44plusmn;2.15) and model + physiological saline group (3.37plusmn;1.91) (t=2.082, 2.146, P<0.05). Conclusion:EGb 761 can partially inhibit the apoptosis of pho toreceptor cells, thus exert protective effect on photoreceptor cells.
Objective To observe the degradation regulation of ubiquitinproteasome inhibitor nuclear factor kappa;B(NF-kappa;B)and its inhibitory signal protein Ikappa;B kinase in earlier period diabetic retinopathy(DR),and the effects on retinal ganglion cells (RGC) apoptosis.Methods Forty healthy adult Wistar rats were randomly divided into control (group A),DR(group B),DR+lowconcentration MG132 treated (group C)and DR+high concentration MG132 treated(group D)groups,10 rats in each group.After 6 and 8 weeks,the results of body masses and fasting blood glucose (FBG) were detected,the expression of NF-kappa;B and Ikappa;B were observed by immunohistochemistry respectively.RGC apoptosis was assessed by the terminal deoxynucleotidyl transferase mediated dUTP-biotin nick-end labelling (TUNEL) method.Results The expression of NF-kappa;B was upregulated in group B compared with group A,its expression decreased in group D compared with group B; but the expression of Ikappa;B was contrary to NF-kappa;B; RGC apoptosis was followed a similar pattern with the expression of NF-kappa;B; the differences among them were statistically significant (P<0.01).Compared the expression of NF-kappa;B,Ikappa;B and RGC apoptosis in group C and D, there were no statistically significant differences(P>0.05).Conclusion Ubiquitin-proteasome inhibitor MG132 can block the activation of NF-kappa;B,inhibit ubiquitination of Ikappa;B degradation and RGC apoptosis.
Objective To establish and evaluate a rat model of nonarteritic anterior ischemic optic neuropathy (NAION). Methods The rats were randomly divided into control group (n=13), sham laser group (n=11) and NAION group (n=23). The right eye was set as the experimental eye. NAION model was induced by directly illuminating the optic nerve (ON) of the right eye with 532 nm green laser, after intravenous infusion with the photosensitizing agent Rose Bengal. Sham laser treatment consisted of illuminating the ON region with 532 nm laser without Rose Bengal injection. Rats in control group underwent no intervention. The appearance of optic disc was observed with funduscope at 12 hours, 1, 3, 7, 28 days post-illumination. The histologic changes in the retina and ON of the NAION model were evaluated qualitatively with hematoxylin and eosin (HE) staining and transmission electron microscopy. The retrograde-labeled retinal ganglion cells (RGC) were counted on photographs taken from retinal flat mounts in a masked fashion. Results The optic disc in NAION eyes were swollen 3 days after photodynamic treatment. HE-stained longitudinal ON sections of NAION revealed vacuolar degeneration on day 3 after induction. Besides, ultrastructural study showed axonal edema and collapsed sheaths in the ischemic optic nerve at the same time point after modeling. ON edema resolved 7 days after induction. The final results revealed optic disc atrophy, extensive axonal loss, severe glial scar, and RGC death in large numbers 4 weeks after modeling. There were no aforementioned manifestations in control and sham laser group. The RGC density of the right eyes was statistically significantly lower in NAION group than that in control group and in sham laser group (t=−14.142, −14.088; P=0.000, 0.000). The survival rate of RGC was statistically significantly lower in NAION group than in control group and in sham laser group (t=−17.048, −16.667; P=0.000, 0.000). There was no difference of RGC density and survival rate of RGC between control and sham laser group (t=0.050, 0.348; P=0.961, 0.731). Conclusion A rat model of NAION was established successfully by photodynamic treatments with Rose Bengal, which induce optic nerve damage and RGC death.
Objective To investigate the enhancing effect of ultrasound microbubbles on transfection of recombinant adenoassociated virus (rAAV) mediated green fluorecent protein (EGFP) gene into retinal ganglion cells (RGC) in vivo.Methods A total of 40 adult Sprague-Dawley (SD) rats were divided into four groups randomly (group A,B,C,D) with 10 rats in each. Group A was the normal control, in which the rats underwent intravitreal injection with 5 mu;l phosphate buffered solution. The rats in group B underwent intravitreal injection with 5 mu;l recombinant adenoassociated virus encoding EGFP gene (rAAV2-EGFP). The rats in group C underwent ultrasound irradiation on eyes right after intravitreal injection with 5 mu;l rAAV2-EGFP; The ultrasound irradiation was performed on the rats in group D right after intravitreal injection with the mixture solution of microbubbles and rAAV2-EGFP ultrasound. After 21 days, RGC were labeled retogradely with fluogold. Seven days after labeling, the retinal flatmounts and frozen sections were made from five rats in each group. Expression of EGFP reporter gene was observed by laser scanning confocal microscope and evaluated via average optical intensity (AOD) and RGC transfection rate. Labeled RGC were counted to evaluate the adverse effects.Results Green fluorescence can be observed exactly in labeled RGC in B,C,and D groups. The AOD and transfection rate in group D was (95.02plusmn;7.25)% and(20.10plusmn;0.74)% , respectively; which were higher than those in group B and C (F=25.970,25.799;P<0.01). The difference of the number of RGC among the four groups was not significant(F=0.877,P>0.05). Conclusion Under the condition of low frequency and with certain energy, ultrasoundmediated microbubble destruction can effectively and safely enhance rAAV delivery to RGC in rats.
Objective To investigate the protective effects of ginkgo biloba extract (EGb) 761 on retinal ganglion cells (RGC) in rats,and to establish a method to define the rat RGC using fluorogold as a fluorescence dye. Methods RGC of 12-20 day-old SpragueDawley rats were labeled by injecting fluorogold into superior colliculus. The eyeball enucleation was performed 6 days later. Retinal stretched preparation was obtained from one eye to observe the label result under fluorescence microscope, and the retina from the other eye was detached to make the cell suspension to observe the configuration of stained RGC under the contrast fluorescence microscope. The cell suspension was divided into the control group and Egb761 groups with the concentration of 0.03%,0.10%, 0.30%, 1.00%, and 3.00%. Trypan blue dye was used to evaluate cells viability and the survival rate of the large retinal ganglion cells was calculated. Results The sign of the RGC was clear after labeled by fluorogold. The characteristics of large RGC were obvious. After detachment, large RGC died quickly in the cell suspension and the fluorescence disappeared. The result of Trypan blue staining indicated that large RGC died rapidly in the cell suspension. Large RGC in EGb761 group showed significantly better survival rates than that in control group at different time sites (Plt;0.01) in a dose-dependent manner (Plt;0.01). Conclusions EGb761 has a significant protective effect on large RGC cultivated in vitro, and retrolable method to identify RGC is feasible.
ObjectiveTo observe the role of Notch signaling pathway inhibitor in differentiation process of stem cells derived from retinal Müller cells into the ganglion cell. MethodsRetinas of Sprague Dawley rat at postnatal 10-20 days were dissociated from eye balls. The third passage of Müller cells was used in this experiment, which cultured by repeated incomplete pancreatic enzyme digestion method. The retinal Müller cells were induced in the serum-free dedifferentiation medium. The cell proliferation state was observed under an inverted microscope. The expression of the specific markers Nestin and Ki-67 of retinal stem cells was measured by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. The positive rate of nucleus was detected by Edu. The retinal stem cells was divided into Gamma secretase inhibtor-I (GSI) group and control group, the rate of ganglion cells was counted by using immunofluorescence staining. ResultsThe cell proliferation had gathered to form a sphere. Immunofluorescence staining showed that the expressions of Nestin and Ki-67 were (92.94±6.48%) and (85.96±6.04%) respectively. Edu positive rate of nucleus was (82.80±6.65)%. RT-PCR and Western blot further confirmed the high expression of Nestin and Ki-67 in the cell spheres but not in the Müller cells. The positive rate of ganglion cells were (16.98±2.87)% and (11.17±0.71)% in GSI group and control group respectively, with the significant difference (t=3.210, P=0.002). ConclusionNotch signaling pathway is an important regulatory gene in stem cells differentiated into retinal ganglion cell.
ObjectiveTo investigate the effect of intravitreal injection of neural stem cells (NSC) derived from human umbilical cord mesenchymal stem cells (hUCMSC) on the expression of brain-derived neurotrophic factor (BDNF) and the number of retinal ganglion cells (RGC). MethodsFifty-two adult male Sprague-Dawley rats were randomly divided into normal group (group A) and diabetes mellitus group which received intraperitoneal injection of streptozocin to make diabetic rat models. One month after the diabetic rat models were confirmed successfully, diabetic rats were randomly divided into diabetic group (group B), hUCMSC group (group C) and hUCMSC-induced NSC group (group D). And thirteen diabetic rats were included in each group. Immuno-cytochemistry was applied to observe BDNF and thymosin-1(Thy-1) staining in the retina. Then mean integrated absorbance of the staining region on the retina slices were analyzed by Image-Pro Plus 6.0. The number of Thy-1 labeled RGC was record. ResultsBDNF and Thy-1 were positive on the retina slices from group A. The staining intensity from group B became weak and the expression of BDNF and Thy-1 gradually decrease with time (P < 0.05), and those from group C and group D were positively (P < 0.05), especially in group D (P < 0.05). The BDNF expression and Thy-1 labeled RGC were the same between group B and C (P > 0.05) at 2 weeks after injection, but were significant different for other time points (P < 0.05).Significant positive correlation between the expression of BDNF and the number of RGC were found by the Pearson correlation analysis (r=0.964, P < 0.05). ConclusionIntravitreal injection of hUCMSC-derived NSC to diabetic rat may protect the retina by promoting the expression of BDNF and increasing the number of RGC.
Objective To establish a purified model of rat retinal ganglion cells (RGCs) cultured by serum-free medium,and provide a good cell model to investigate the damage of RGCs in glaucoma,retinal ischemia,and degenerative retinopathy. Methods Two monoclonal antibodies,anti-rat SIRP(OX-41)against rat macrophage and antibody against rat Thy-1(OX-7),were used to purify and characterize RGCs from 1-3-day old Sprague-Dawley(SD)rats by means of two-step filtration.Purified RGCs were cultured in serum-free neurobasal medium containing B27 and ciliary neurotrophic factor(CNTF) meeting the neuronal cellrsquo;s special requirements.Photomicrographs illustration,immunfluorescence staining of Thy-1,calcein-acetoxymethyl ester(calcein-AM)fluorescence images were used to observe and identify cultured retinal cells and purified RGCs. Results Among the primary cultured rat retinal cells,91% were retinal neurons.Protuberances of RGCs were seen after cultured for 24 hours.At the4th to 8th day,many cells had uniform configuration,large body,and long protuberances. At the 14th day,over 60% cells maintained viability.Immunoflurescence staining of Thy-1 showed the purity of RGCs was about 90%. The results of calcein-AM staining,which stained the living cells only,showed large cell body of RGCs and most of RGCs had a protuberance whose length was twice longer than the diameter of the cells. Conclusion RGCs cultured by serum-free medium has uniform size,good configuration,and high purity,which is adapt to the research of damage of RGCs caused by various factors and to evaluate the protective effects of neuroprotective agents. (Chin J Ocul Fundus Dis, 2006, 22: 200-203)