Objective To study the mechanism of restenosis of the vein graft and the effect of the grafting injury to the vein graft. Methods One side of the 36 healthy rabbits was randomly chosen as the V-A group, and on the side a 1.5cmlong femoral vein was obtained, and an 0.5-cm-long segment of the obtained femoral vein was separated as the control group. The remaining 1-cm-long femoral vein was inverted and was autogenously implanted into the femoral artery on the same side of the rabbit. The other side of the rabbits was chosen as the V-V group, and on this side a 1-cm-long femoral vein was obtained ex vivo and then was sutured in situ. The vein grafts on both sides were harvested 4 weeks after operation. The specimens from the harvested vein grafts were stained with HE and theelastic fiber Victoria blue for an observation on the histological changes in the walls of the vein grafts, and the specimens were also stained by the immunohistochemistry of the proliferating cell nuclear antigen (PCNA) for an observation on the wall cell proliferation of the vein grafts. The changes in the ultrastructure of the proliferated wall cells of the vein grafts were observed under electron microscope. The two sides of the rabbits were compared. Results The smooth muscle cells of the media developed hyperplasia, but theintima and the media remained unchanged in their thickness (3.50±0.41 μm, 12.23±1.59 μm) in the V-V group, with no difference when compared with the control group (3.40±0.37 μm, 12.14±1.62 μm); however, when compared with the V-A group (25.60±3.21 μm, 21.30±2.47 μm),there was a significant difference in the thickness (Plt;0.01). There were no cells positive for PCNA by the immunohistochemistry examination in the control group. The cells positive for PCNA were found in the intima and the media in both the V-V group and the V-A group; however, the percentageof the cells positive for PCNA in the intima and the media was significantly greater in the V-A group than in the V-V group (16.4%±1.9% and 36.5%±3.7% vs 5.9%±1.3% and 23.4%±3.4%, Plt;0.01). In the V-V group, the endothelial cell could be observed under transmis-sion electron microscope, which was flat and had a processlike villus at its free end, and the endothelial cells were closely arranged andhad hyperplasia of the smooth muscle cells in the media. But in the V-A group,the endothelial cells had an obvious hyperplasia with an irregular shape and a widened space between the cells, and in the intima a great amount of the smooth muscle cells could be observed, which had a broken basement membrane. The smooth muscle cells also had an obvious hyperplasia in the media. The shape and alignment of the endothelial cells in the control group were similar to those in the V-V group, but the hyperplasia of the smooth muscle cells was not observed in the media. Conclusion The grafting injury can cause hyperplasia ofthe vascular wall cells, and if the hemodynamics is changed simultaneously, more serious hyperplasia and cell migration can be observed from the media to the intima, resultingin restenosis of the blood vessels. So, if we can reduce the grafting injury and improve the microcirculation of the vein graft, we may find out the methods ofpreventing restenosis of the vein graft. The animal model of the V-V graftcan help to understand the mechanism of restenosis of the vein graft.
In order to develope a new method to overcome the difficulties in anastomosis of blood vessels with different diameter, phleboplasty was utilized at the join-point to expand the diameter of branched vein graft, with a funnel-shaped stoma formed consequently. After successfully experimented in fresh blood vessels in vitro, the method was practised clinically to repair injured arteries in extremities, with the outcome that phleboplasty of branched vein graft could enlarge the diameter by 1-1.25 times, and with satisfied effects in 3 clinic cases. So, the conclusion was that: phleboplasty of branched vein graft was a new effective and convinient method to repair injured arteries with different diameters
ObjectiveTo evaluate the effect of human heme oxygenase 1 augmentation in vein grafts by adenoviral mediated gene transfer of heme oxygenase 1 (Ad hHO 1) on intimal hyperplasia.MethodsTwenty one Japanese white rabbits were divided into three groups: control group, Ad null control group, and Ad hHO 1 group(each group 7 rabbits). During the operation of rabbits jugular vein into carotid artery interposition grafting, harvested rabbit jugular vein segments were exposed for 30min at room temperature to heparin saline, recombinant replication deficient adenovirus encoding hHO 1(Ad hHO 1, 1× 10 9pfu/ml), and nude recombinant replication deficient adenovirus (Ad null, 1×10 9pfu/ml). Quantitative histological studies of the vein segments were performed 28 days after operation. Protein of hHO 1 was detected with method of immunohistochemical staining(S P) in 14 days and 28 days after operation.ResultsThe average intimal thickness, medial thickness and intimal to medial(I/M) ratio were calculated for each group 28 days after bypass operation. Compared to intimal thickness, I/M ratio of control group veins and Ad null group veins,Ad hHO 1 group veins decreased significantly( P lt;0.01). There was no statistically difference in medial thickness ( P gt;0 05). Strong staining of hHO 1 was detected in vein grafts wall of Ad hHO 1 group.ConclusionAd hHO 1 gene therapy may inhibit intimal hyperplasia of vein grafts in rabbits.
Objective To assess the effect of topical appl ication of 5-fluorouracil (5-FU) on intimal hyperplasia in rabbit vein graft. Methods Sixty-four male New Zealand white rabbits, aged 5 months and weighing 2.8-3.0 kg, were randomly divided into group A, B, C, and D (n=16 rabbits per group). Artery defect model was establ ished by cutting about 1 cm artery from the middle part of the dissociated left common carotid artery. A section about 3 cm was cut from the right external jugular vein, and the harvested vein was inverted and end-to-end anastomosed to the artery defect with 9-0 non-traumatic suture. After anastomosis, the extima of the grafted veins in group A, B, and C was completely wrapped with cotton sheet (12 mm × 30 mm × 1 mm in size) immersed by 5-FU at a concentration of 50.0, 25.0, and 12.5 mg/mL, respectively, and eachvein was treated 5 times (1 minute at a time). In group D, the extima of the graft veins was treated with normal sal ine instead of 5-FU. The grafted veins were obtained 1, 2, 4, and 6 weeks after operation, HE staining and Masson staining were preformed for histological changes of grafted vein wall, prol iferating cell nuclear antigen (PCNA) immunohistochemistry staining and TUNEL label ing staining were conducted for prol iferation and apoptosis of smooth muscle cell of the grafted vein, and transmission electron microscope observation was performed for cellular ultrastructure. Results The HE staining, Masson staining, and PCNA immunohistochemistry staining showed that the thickness of intima in group A and B was obviously less than that in group C and D at 1, 2, 4, and 6 weeks after operation, and the prol iferation cells in group A and B were less than that in group C and D at 1, 2, and 4 weeks after operation. The thickness of the intima, the degree of intima hyperplasia, the degree of vessel lumen stenosis of four groups at different time points were as follows: at 1 week after operation, group A [(12.69 ± 1.68) μm, 0.73 ± 0.05, 0.025 ± 0.003], group B [(17.52 ± 2.01) μm, 0.86 ± 0.06, 0.027 ± 0.004], group C [(21.92 ± 1.85) μm, 1.06 ± 0.09, 0.036 ± 0.006] and group D [(26.45 ± 3.86) μm, 1.18 ± 0.08, 0.041 ± 0.005]; at 2 weeks after operation, group A [(24.61 ± 2.91) μm, 0.86 ± 0.06, 0.047 ± 0.003], group B [(37.28 ± 2.78) μm, 1.17 ± 0.09, 0.060 ± 0.004], group C [(46.52 ± 2.25) μm, 1.44 ± 0.08, 0.073 ± 0.003], and group D [(52.07 ± 3.29) μm, 1.45 ± 0.05, 0.081 ± 0.006]; at 4 weeks after operation, group A [(61.09 ± 6.84) μm, 1.38 ± 0.08, 0.106 ± 0.007], group B [(63.61 ± 8.25) μm, 1.40 ± 0.07, 0.107 ± 0.010], group C [(80.04 ± 7.65) μm, 1.64 ± 0.07, 0.129 ± 0.011], and group D [(84.45 ± 9.39) μm, 1.68 ± 0.10, 0.139 ± 0.014]; at 6 weeks after operation, group A [(65.27 ± 5.25) μm, 1.46 ± 0.07, 0.113 ± 0.005], group B [(65.82 ± 7.12) μm, 1.45 ± 0.05, 0.112 ± 0.011], group C [(84.45 ± 9.39) μm, 1.69 ± 0.09, 0.135 ± 0.007], and group D [(87.27 ± 8.96) μm, 1.76 ± 0.05, 0.140 ± 0.012]. Group A and B were inferior to group C and D in terms of the above three parameters and cell prol iferation index 1, 2 and 4 weeks after operation (P lt; 0.05). Group A and B were superior to group C and D in terms of cell apoptosis index of intima and media 1 and 2 weeks after operation (P lt; 0.05). Transmission electron microscope observation showed that the synthetic cell organelles such as rough endoplasmic reticulum, golgi apparatus, and ribosome in group A and B were obviously less than those in group C and D (P lt; 0.05). Conclusion Topicalappl ication of 5-FU can effectively inhibit intima hyperplasia of the vein grafts.
This study was performed on canine femoral veins which were interpositionally implanted into the femoral arteries and the investigation was in terms of zero-stress state, compliance and hemodynamic assessment. The results revealed that the vein grafts had the similar characteristics of compliance with the normal veins. Using Doppler ultrasonography to monitor the blood flow velocity through the vein grafts, the hemodynamic parameters such as pulsatility index (PI) and blood flow volume were evaluated consecutively within one month after the operations .No significant differences were found between these parameters at different time points. It was suggested that autogenous vein graft had an adaptive course when operating in an arterial hemodynamic circumstances and It’s mechanical changes did not bear upon the hemodynamics through the vein graft.
ObjectiveTo detect the inhibitory effect of early growth response gene-1 DNA enzyme (EDRz) on proliferation of vascular smooth muscle cell (VSMC) and intimal hyperplasia, and confirm the effect of gene therapy on stenosis and occlusion after vein transplantation. MethodsEDRz was constructed, and autogenous vein graft model was established with Wistar rats, transplanting the right jugular vein to infra renal abdominal aorta by microsurgical technique. EDRz was transfected to the graft veins and the vein graft samples were harvested at hour 1, 2, 6, 24 and on day 3, 7, 14, 28, 42 after grafting, 10 Wistar rats were randomly selected in every time. The expression of EDRz in transfected vein graft was detected by fluorescent microscope. Egr-1 mRNA was measured by reverse transcription-PCR (RT-PCR) and in situ hybridization, respectively. The protein expression of Egr-1 was detected by Western blot and immunohistochemistry, respectively. HE stained vein grafts were observed under microscope. Results① The results of EDRz transfected vein graft: At hour 1 after grafting, EDRz was mainly located in adventitia, tunica media, and partial endothelial cells of vein graft; At hour 2, 6, and 24, EDRz was located in tunica media of vein graft; and on day 7, it was mainly located in intima of vein graft. There wasn’t EDRz in vein grafts on day 14, 28, and 42. ② The results of expression of Egr-1 mRNA: Detection by RT-PCR: At hour 1 after transfecting, the expression of Egr-1 mRNA arrived at the peak, and declined at hour 2, 6, and 24. The expression was tenuity on day 3. Egr-1 mRNA expression was not found on day 7, 14, 28, and 42. The expression of Egr-1 mRNA at hour 1 was significantly higher than that of the other time point (Plt;0.01). The result of in situ hybridization was coincident with RT-PCR. ③ The results of expression of Egr-1 protein: The result of Western blot: There was no expression of Egr-1 protein in normal veins. At hour 2 after grafting, expression of Egr-1 protein was found, and declined at hour 6, 24, and on day 3. There was no expression of Egr-1 protein at hour 1, and on day 7, 14, 28, and 42. The expression of Egr-1 protein at hour 2 was significantly higher than that of the other time point (Plt;0.01). The result of immunohistochemistry was coincident with Western blot. ④The degree of VSMC hyperplasia and intimal thickness were lighter in EDRz transfected vein grafts than that in nottransfected vein grafts contemporarily. ConclusionsEDRz could reduce the expression of Egr-1 in autogenous vein graft, and could effectively restrain VSMC proliferation and intimal hyperplasia, and prevent vascular stenosis and occlusion after vein grafting.
Coronary artery bypass grafting (CABG) is an effective method for the treatment of coronary heart disease at present. However, there is still a high rate of vein graft occlusion after CABG, which has a serious impact on the short and long-term clinical results. Venous access technique has been considered as an important factor on affecting the long-term patency rate. Compared with harvesting technology of the open saphenous vein harvesting, no-touch technology retained the surrounding tissue and vascular adventitia of great saphenous vein, and it avoided the high pressure of expansion vein. After CABG was performed by using the no-touch technique, the vein grafts obtained a better short and long-term patency rate, but the effect still needs further clinical verification.
Objective To investigate the effect and mechanism of epigallocatechin-3-gallate (EGCG) on restenosis of the vein graft. Methods Totally 90 Sprague-Dawley rats were randomly divided a the control group, a vein graft group and an EGCG+vein graft group. At week 1, 2 and 4, the intimal and tunica thickness of the venous graft wall was evaluated by hematoxylin-eosin staining, and the expression of Ki-67 was assessed by immunohistochemistry analysis, and then the expression of hairy and enhancer of split-1 (HES1) was measured by Western blot assay. Results At week 2, the intimal thickness (46.76±4.89 μmvs. 8.93±0.82 μm, 46.76±4.89 μmvs. 34.24±3.57 μm), tunica thickness (47.28±4.37vs. 16.33±1.52 μm, 47.28±4.37vs. 36.27±3.29 μm), positive cell rate of Ki-67 (21.59%±2.29%vs. 1.12%±0.22%, 21.59%±2.29%vs. 15.38%±1.30%), expression of HES1 respectively increased in the experimental group than those in the control group and the EGCG+vein graft group (P<0.05, respectively). At week 4, the intimal thickness (66.38±6.23 μmvs. 8.29±0.79 μm, 66.38±6.23 μmvs. 48.39±4.23 μm), tunica thickness (63.27±6.18 μmvs. 15.29±1.49 μm, 63.27±6.18 μmvs. 44.63±4.49 μm), positive cell rate of Ki-67 (33.19%±3.03%vs. 1.09%±0.19%, 33.19%±3.03%vs. 24.37%±2.73%), expression of HES1 increased in the experimental group than those in the control group and EGCG+vein graft group (P<0.05, respectively). Conclusion EGCG may inhibite restenosis of vein graft by inhibiting Notch signal pathway.
OBJECTIVE To explore the effect of basic fibroblast growth factor (bFGF) combined with autogenous vein graft conduit on peripheral nerve regeneration. METHODS Fifty four New Zealand rabbits were divided into three groups. The main trunk of sciatic nerve of rabbit in one side was severed and bridged by autogenous vein. 0.2 ml bFGF solution (4,000 U/ml) was intravenously injected to the vein graft conduit as group A, the same amount of saline solution as group B, and no solution injection as group C. Microscopic examination, axon video analysis and nerve conduct velocity were performed at the 10th, 30th, and 100th day after operation. RESULTS The nerve fibers were grown into vein graft conduit in all groups at 30th after operation, they were more and regular in group A than that of group B and C, and the axon regeneration rate in group A was more than that of group B and C. CONCLUSION bFGF combined with autogenous vein graft conduit can markedly promote nerve regeneration.
Abstract: Objective To determine the effects of oxidative stress reaction on intima hyperplasia after autologous vein grafting. Methods Seventy female SpragueDawley(SD) rats were randomly divided into a control group(n=10) and an experimental group (n=60). The experimental group was then divided into six time points of one day; one, two, four, and six weeks; and two months after surgery; with 10 rats for each time point. Autologous vein grafting models were established. At each time point the designated rats were anaesthetized, and the grafts were isolated and stained with HE. The same length of external jugular vein was cut from each rat in the control group. The neointima to tunica media area ratios (I/M) were measured with acomputerized digital image analysis system. Nuclear factorkappa B (NF-κB) and copper zinc superoxide dismutase (CuZnSOD) were detected byimmunohistochemistry. The concentration of malondialdehyde (MDA) in serum was analyzed by colorimetry. Results In the control group, expression levels of NF-κB and CuZnSOD were low. In the experimental group, expression of NF-κB increased after the operation and peaked two weeks later. The plateau was sustained for about one month, and then the level of expression declined gradually, reaching the baseline at the twomonth time point. The expression of CuZnSOD increased gradually after the operation and peaked one week later, then declined to the normal level after 2-3 weeks at the plateau. In the control group, the concentration of serum MDA was 4.966±1.346 nmol/ml. In the experimental -group, the-MDA concentration increased dramatically after the operation, then-declined from its highest level at the oneday time point (21.161±2.174 nmol/ml) to the normal level at two months (6.208±2.908 nmol/ml) after the operation (P<0.05). In the control group, I/M was 0.2096±0.0253, while in the experimental group, it was higher one week after the operation (0.6806±0.0737) and peaked at four weeks (1.4527±0.0824), falling to 1.0353±00656 at six weeks and 0.9583±0.0516 attwo months (P<0.05) for the experimental and control groups). Conclusion Endothelial cell injury initiates an oxidative stress reaction after autologous vein grafting and augments inflammation by activating NF-κB, thus playing an important role in inducing restenosis of the grafted vein.