Objective To compare outcomes after single versus bilateral lung transplantation in patients with end-stage chronic obstructive pulmonary disease (COPD) with retrospective cohort study, and to provide a reference for surgical selection. Methods One hundred and two patients with end-stage COPD who received lung transplantation in Wuxi People's Hospital affiliated to Nanjing Medical University from January 2010 to May 2019 were evaluated, including 97 males and 5 females, aged from 42 to 82 years, with an average age of (59.8±8.0) years. Recipients were divided into single lung transplantation (SLT) group (31 cases) and bilateral lung transplantation (BLT) group (71 cases). Preoperative characteristics, postoperative outcomes, postoperative complications, functional improvement and survival between the two groups were analyzed retrospectively. Results The SLT group were significantly older than the BLT group [(62.6±8.8) years vs. (58.6±7.4) years, P<0.05], which was consistent with the practice mode of single lung transplantation in the elderly patients in this center. The FEV1% predicted and the six‐minute walk distance (6-MWD) in the BLT group were better than those in the SLT group (P<0.05). The cumulative survival rate in 1, 3 and 5 years after operation in the BLT group was higher than that in the SLT group (70.4%, 63.2%, 61.5%, respectively vs. 67.7%, 58.1%, 54.6%, respectively), but there was no statistical difference (P=0.388). The two groups were comparable in other preoperative clinical data (P>0.05). The cold ischemia time and total operation time were shorter in the SLT group than in the BLT group, and the intraoperative blood loss was less than that in the BLT group, but more patients required intraoperative extracorporeal membrane oxygenation support than the BLT group (P<0.05). There were no significant differences in postoperative ventilator support, reoperation, length of intensive care unit stay, postoperative hospital stay, and perioperative mortality (P>0.05). In terms of postoperative complications, the incidence of primary graft dysfunction grades 3 was higher in the SLT group than in the BLT group (35% vs. 8%, P=0.001). There were no significant differences between the two groups in chest complications, airway complications, acute rejection, infection, and bronchial occlusion syndrome (P>0.05). Nine patients (29%) developed acute native lung hyperinflation in the SLT group. ConclusionsBilateral lung transplantation is superior to single lung transplantation in the treatment of end-stage COPD. The advantage is mainly reflected in the simple perioperative management, better functional improvement after operation. Single lung transplantation as a beneficial supplement to double lung transplantation should still be considered in selected patients.
Objective To explore the hemodynamic monitoring value of pulse-indicated continuous cardiac output( PiCCO) during lung transplantation. Methods Twenty patients with end-stage lung disease undergone lung transplantation were enrolled. Hemodynamic states were monitored by PiCCO and Swan-Ganz standard thermodilution pulmonary artery catheter( PAC) simultaneously at six stages throughout the study. Changes in the variables were calculated by subtracting the first fromthe second measurement( Δ1 ) and so on ( Δ1 to Δ5 ) . Results The linear correlation between intra-thoracic blood volume index( ITBVI) and stroke volume index( SVIpa) was significant ( r = 0. 654, P lt; 0. 05) , whereas pulmonary artery wedge pressure ( PAWP) poorly correlated with SVIpa( P gt; 0. 05) . Changes in ITBVI correlated with changes in SVIpa ( Δ1 , r =0. 621; Δ2 , r = 0. 784; Δ3 , r = 0. 713; Δ4 , r = 0. 740; Δ5 , r = 0. 747; all P lt; 0. 05) , whereas PAWP failed. The mean bias between CIart and CIpa was ( 0. 09 ±0. 5) L·min-1 ·m-2 ; the limit of agreement was ( - 0. 89 ~1. 07) L·min-1 ·m-2 . Conclusions There is good correlation between the two methods of PiCCO and PAC for reflecting the change of heart preload. PiCCO is reliable in hemodynamic monitoring in patients undergone lung transplantation.
Valvular heart disease (VHD) ranks as the third most prevalent cardiovascular disease, following coronary artery disease and hypertension. Severe cases can lead to ventricular hypertrophy or heart failure, highlighting the critical importance of early detection. In recent years, the application of deep learning techniques in the auxiliary diagnosis of VHD has made significant advancements, greatly improving detection accuracy. This review begins by introducing the etiology, pathological mechanisms, and impact of common valvular heart diseases. It then explores the advantages and limitations of using electrocardiographic signals, phonocardiographic signals, and multimodal data in VHD detection. A comparison is made between traditional risk prediction methods and large language models (LLMs) for predicting cardiovascular disease risk, emphasizing the potential of LLMs in risk prediction. Lastly, the current challenges faced by deep learning in this field are discussed, and future research directions are proposed.
Objective To investigate the impact of intraoperative red blood cell (RBC) transfusion volume on postoperative oxygenation index in lung transplant recipients. Methods A retrospective analysis was conducted on the clinical data of lung transplant recipients at Wuxi People’s Hospital Affiliated to Nanjing Medical University from 2021 to 2023. Patients were divided into a non-severe primary graft dysfunction (PGD) group and a severe PGD group based on whether their oxygenation index was greater than 200 mm Hg at postoperative 0 h, 24 h, and 48 h. General data and intraoperative RBC transfusion volumes were compared between the two groups to assess their effects on postoperative oxygenation indices at 0 h, 24 h, and 48 h. A binary logistic regression model was constructed to explore the effect values [odds ratios (OR) and their 95% confidence intervals (CI) ] of RBC transfusion volume on oxygenation status at different postoperative time points (0 h, 24 h, 48 h), and the area under the receiver operating characteristic curve (AUC) was calculated to evaluate diagnostic efficacy. Results A total of 351 patients were included, comprising 260 males and 91 females, aged 20 to 77 years. At postoperative 0 h, the OR for intraoperative RBC transfusion was 1.486 (95%CI, P=0.061); at postoperative 24 h, the OR was 3.111 (95%CI, P<0.001); and at postoperative 48 h, the OR was 1.583 (95%CI, P=0.038), indicating that the oxygenation status of lung transplant recipients was significantly affected by the volume of intraoperative transfusion over time. Furthermore, a transfusion volume greater than 975 mL significantly impacted oxygenation at postoperative 24 h and 48 h. Conclusion The volume of intraoperative RBC transfusion has a significant effect on oxygenation status at 24 h and 48 h post-surgery. The amount of RBC transfusion during lung transplantation is associated with the occurrence of severe PGD, and controlling RBC transfusion volume during the procedure may help reduce the incidence of severe PGD.