west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "biocompatibility" 22 results
  • Application and development of shape memory polymers in endovascular therapy

    As one of the stimulus-response polymeric intelligent materials, shape memory polymers have been widely applied in biomedicine due to their better biocompatibility, higher controllability, stronger deformation restorability and biodegradability compared with shape memory alloys and shape memory ceramics. This review will introduce the structural principles of shape memory polymers and summarize their applications in the treatment of vascular diseases, especially in endovascular therapy. At the same time, the related technical problems and the future of shape memory polymers are prospected. With the continuous development of processing technology and materials, it can be predicted that shape memory polymers will be more widely used in the medical field.

    Release date:2020-12-07 01:26 Export PDF Favorites Scan
  • The biocompatibility and immunogenicity study of decellularized tracheal matrix

    ObjectiveTo investigate the biocompatibility and immunogenicity of the tracheal matrix decellularized by sodium perchlorate (NaClO4).MethodsBone marrow mesenchymal stem cells (BMSCs) were divided from 2-month-old New Zealand white rabbits. The trachea of 6-month-old New Zealand white rabbits were trimmed to a length of 1.5 cm and randomly divided into control group (group A1, n=5, just stripped the loose connective tissue outside the trachea) and experimental group (group B1, n=5, decellularized by improved NaClO4 immersion method). The cytotoxicity of the scaffold leaching solution was detected by MTT assay, and the major histocompatibility complex (MHC) expression was detected by immunohistochemical method. The 4th generation of BMSCs were seeded onto the scaffold of 2 groups, and the cell activity around the material was observed by inverted microscope after Giemsa staining at 48 hours, while the cells states on the scaffold were observed at 7 and 14 days after culturing by scanning electron microscope. Another 10 6-month-old New Zealand white rabbits were randomly divided into control group (group A2, n=5) and experimental group (group B2, n=5), which implanted the native trachea and decellularized tracheal matrix into the subcutaneous sac of the back neck, respectively. The serum immunoglobulin IgM and IgG contents were analysed at 5, 10, 15, 20, 25, and 30 days after operation, and HE staining observation was performed at 30 days after operation.ResultsMTT assay showed that the proliferation activity of BMSCs cultured in the leach liquor of group B1 was well, showing no significant difference when compared with group A1 and negative control group with pure culture medium (P>0.05). The immunohistochemical staining showed that the decellularized process could significantly reducing the antigenicity of matrix materials. Giemsa staining showed that BMSCs grew well around the two tracheal matrixs (groups A1 and B1) in vitro. Scanning electron microscope observation showed that the cells were attached to the outer wall of the tracheal material in group A1, which present a flat, round, oval shaped, tightly arranged cells and cluster distribution; and in group B1, the cells formed a single lamellar sheet cover the outer wall of the tracheal material, whose morphology was similar to that in group A1, and the growth trend was better. In vivo experimental results showed that the rejection of group B2 was lower than that of group A2. The contens of IgM and IgG in group A2 were significantly higher than those in group B2 at each time point after operation (P<0.05). HE staining showed no signs of rejection, macrophagocyte, or lymphocyte infiltration occurred, and the collagen fibers maintained their integrity in group B2.ConclusionThe decellularized matrix treated by NaClO4 has a fine biocompatibility, while its immunogenicity decreased, and it is suitable for the scaffold material for constructing of tissue engineered trachea.

    Release date:2018-04-03 09:11 Export PDF Favorites Scan
  • Biocompatibility of bioprosthetic heart valve materials with a non-glutaraldehyde-based chemical treatment

    ObjectiveTo study the biocompatibility of bioprosthetic heart valve material with a non-glutaraldehyde-based treatment, and to provide the safety data for the clinical application. MethodsAll the tests were conducted according to GB/T16886 standards. The in vitro cytotoxicity was determined by methyl thiazolyl tetrazolium assay. Fifteen guinea pigs were divided into a test group (n=10) and a control group (n=5) in the skin sensitization test. Three New Zealand white rabbits were used in the intradermal reactivity test. Five sites on both sides of the rabbit back were set as test sites and control sites, respectively. In the acute systemic toxicity test, a total of 20 ICR mice were randomly assigned to 4 groups: a test group (polar medium), a control group (polar medium), a test group (non-polar medium) and a control group (non-polar medium), 5 in each group. Forty SD rats were divided into a test group (n=20) and a control group (n=20) in the subchronic systemic toxicity test. ResultsThe viability of the 100% extracts of the bioprosthetic heart valve material with a non-glutaraldehyde-based treatment was 75.2%. The rate of positive reaction was 0.0%. The total intradermal reactivity test score was 0. There was no statistical difference in the body weight between the test group and control group in the acute systemic toxicity test. There was no statistical difference in the body weight, organ weight, organ weight/body weight ratio, blood routine test or blood biochemistry between the test group and control group in the subchronic systemic toxicity test. ConclusionThe bioprosthetic heart valve material with a non-glutaraldehyde-based treatment has satisfying biocompatibility, which conforms to relevant national standards. The material might be a promising material for application in valve replacement.

    Release date:2022-12-28 06:02 Export PDF Favorites Scan
  • Experimental study on long-term outcome of porcine collagen membrane xenotransplantation in vivo

    ObjectiveTo observe the long-term outcome and biocompatibility of the porcine collagen membrane (DermalGen) after xenotransplantation in vivo.MethodsTwenty Sprague Dawley rats were randomly divided into 2 groups (n=10). DermalGen were implanted subcutaneously into the dorsum of rats in experimental group, and the rats in control group were treated with sham-operation. At 3, 7, and 15 days and 1, 3, 6, and 12 months after operation, the samples of experimental group were harvested and gross observation, histological observation, CD31 immunohistochemical staining, and transmission electron microscope observation were taken to observe the inflammatory reaction, angiogenesis, and collagen arrangement. The skin tissues of the control group at 12 months were observed and compared.ResultsAll incisions healed in experimental group, without obvious swelling and inflammatory reaction. The DermalGen was closely contact with the surrounding tissue without obvious rejection, and it was still legible at 12 months. Histological observation of experimental group showed that the infiltration of fibroblasts and inflammatory cells were seen at 7 days. More capillaries and fibroblast cells were seen and the inflammatory response gradually faded at 15 days and 1 month. There were abundant vessels and cells in the DermalGen at 3 months. The angiogenesis and fibroblasts decreased gradually, and the collagen started to format and margin blended simultaneously at 6 and 12 months. The inflammatory cells in experimental group at 15 days and 1 month were significantly more than that in control group (P<0.05), and no significant difference was found at 12 months between experimental group and control group (P>0.05). Immunohistochemical staining of experimental group showed that the angiogenesis changed obviously with the time, and the density of vessels decreased significantly at 12 months. Compared with control group, the possitive expressions of CD31 in experimental group at 15 days and 12 months after operation were significantly decreased (P<0.05), and were significantly increased at 1 month (P<0.05). Transmision electron microscope observation showed that the arrangement of collagen in grafted DermalGen had no obvious changed when compared with the DermalGen, and vascular endothelial cell, capillarypericytes and fibroblast cells could be seen inside.ConclusionThe DermalGen structure is stable after long-term xenotransplantation and with good tolerogenic property in vivo.

    Release date:2018-04-03 09:11 Export PDF Favorites Scan
  • Effect of human tooth bone graft materials on proliferation and differentiation of mice mononuclear macrophage RAW264.7

    Objective To investigate the effect of human tooth bone graft materials on the proliferation, differentiation, and morphology of macrophages, and to understand the biocompatibility and cytotoxicity of human tooth bone graft materials. Methods Fresh human teeth were collected to prepare human tooth bone graft materials, the adhesion of mouse mononuclear macrophages RAW264.7 to human bone graft materials was observed under confocal microscopy. Scanning electron microscopy was used to observe the morphology of human tooth bone graft materials, OSTEONⅡ synthetic highly resorbable bone grafting materials, and untreated tooth powder (dental particles without preparation reagents). Different components of the extract were prepared in 4 groups: group A (DMEM medium containing 10% fetal bovine serum), group B (human tooth bone graft materials), group C (OSTEONⅡ synthetic highly resorbable bone grafting materials), group D (untreated tooth powder without preparation reagents). The 4 groups of extracts were co-cultured with the cells, and the cytotoxicity was qualitatively determined by observing the cell morphological changes by inverted microscope. The cell proliferation and differentiation results and cell relative proliferation rate were determined by MTT method to quantitatively determine cytotoxicity. The cell viability was detected by trypanosoma blue staining, and tumor necrosis factor α (TNF-α ) and interleukin 6 (IL-6) expressions were detected by ELISA. Results Scanning electron microscopy showed that the surface of the human tooth bone graft material and the OSTEONⅡ synthetic highly resorbable bone grafting materials had a uniform pore structure, while the untreated tooth particle collagen fiber structure and the demineralized dentin layer collapsed without specific structure. Confocal microscopy showed that the cells grew well on human tooth bone graft materials. After co-culture with the extract, the morphology and quantity of cells in groups A, B, and C were normal, and the toxic reaction grades were all grade 0, while group D was grade 3 reaction. MTT test showed that the cytotoxicity of groups B and C was grade 0 or 1 at each time point, indicating that the materials were qualified. The cytotoxicity was grade 2 in group D at 1 day after culture, and was grade 4 at 3, 5, and 7 days. Combined with cell morphology analysis, the materials were unqualified. The trypanosoma blue staining showed that the number of cells in groups A, B, and C was significantly higher than that in group D at each time point (P<0.05), but no significant difference was found among groups A, B, and C (P<0.05). ELISA test showed that the levels of TNF-α and IL-6 in groups A, B, and C were significantly lower than those in group D (P<0.05), but no significant difference was found among groups A, B, and C (P<0.05). Conclusion The human tooth bone graft materials is co-cultured with mice mononuclear macrophages without cytotoxicity. The extract has no significant effect on cell proliferation and differentiation, does not increase the expression of inflammatory factors, has good biocompatibility, and is expected to be used for clinical bone defect repair.

    Release date:2018-10-09 10:34 Export PDF Favorites Scan
  • Preparation of Elastic Porous Cell Scaffold Fabricated with Combined Polydimethylsiloxane (PDMS) and Hydroxyapatite (HA)

    Polydimethylsiloxane (PDMS) and hydroxyapatite (HA) were combined in our laboratory to fabricate an elastic porous cell scaffold with pore-forming agent, and then the scaffold was used as culture media for rat bone marrow derived mesenchymal stem cells (rBMSCs). Different porous materials (square and circular in shape) were prepared by different pore-forming agents (NaCl or paraffin spheres) with adjustable porosity (62%-76%). The HA crystals grew on the wall of hole when the material was exposed to SBF solutions, showing its biocompatibility and ability to support the cells to attach on the materials.

    Release date: Export PDF Favorites Scan
  • Progress in application of medical absorbable haemostatic materials for haemostasis in orthopaedic surgery

    ObjectiveThe application progress of medical absorbable haemostatic material (MAHM) in hemostasis during orthoapedic surgery was reviewed, in order to provide reference for clinical hemostasis program. Methods The domestic and foreign literature on the application of MAHM for hemostasis in orthopedic surgery was extensively reviewed and summarized. ResultsAccording to biocompatibility, MAHM can be divided into oxidized cellulose/oxidized regenerated cellulose materials, chitosan and its derivatives materials, starch materials, collagen and gelatin materials, and fibrin glue materials, etc., which can effectively reduce blood loss when used in orthopedic surgery for hemostasis. Each hemostatic material has different coagulation mechanism and suitable population. Oxidized cellulose/oxidized regenerated cellulose, chitosan and its derivatives, starch hemostatic material mainly stops bleeding by stimulating blood vessel contraction and gathering blood cells, which is suitable for people with abnormal coagulation function. Collagen, gelatin and fibrin glue hemostatic materials mainly affect the physiological coagulation mechanism of the human body to stop bleeding, suitable for people with normal coagulation function. ConclusionReasonable selection of MAHM can effectively reduce perioperative blood loss and reduce the risk of postoperative complications, but at present, single hemostatic material can not meet clinical needs, and a new composite hemostatic material with higher hemostatic efficiency needs to be developed.

    Release date:2024-12-13 10:50 Export PDF Favorites Scan
  • Preparation and in vitro evaluation of tissue engineered osteochondral integration of multi-layered scaffold

    ObjectiveThe tissue engineered osteochondral integration of multi-layered scaffold was prepared and the related mechanical properties and biological properties were evaluated to provide a new technique and method for the repair and regeneration of osteochondral defect.MethodsAccording to blend of different components and proportion of acellular cartilage extracellular matrix of pig, nano-hydroxyapatite, and alginate, the osteochondral integration of multi-layered scaffold was prepared by using freeze-drying and physical and chemical cross-linking technology. The cartilage layer was consisted of acellular cartilage extracellular matrix; the middle layer was consisted of acellular cartilage extracellular matrix and alginate; and the bone layer was consisted of nano-hydroxyapatite, alginate, and acellular cartilage extracellular matrix. The biological and mechanics characteristic of the osteochondral integration of multi-layered scaffold were evaluated by morphology observation, scanning electron microscope observation, Micro-CT observation, porosity and pore size determination, water absorption capacity determination, mechanical testing (compression modulus and layer adhesive strength), biocompatibility testing [L929 cell proliferation on scaffold assessed by MTT assay, and growth of green fluorescent protein (GFP)-labeled Sprague Dawley rats’ bone marrow mesenchumal stem cells (BMSCs) on scaffolds].ResultsGross observation and Micro-CT observation showed that the scaffolds were closely integrated with each other without obvious discontinuities and separation. Scanning electron microscope showed that the structure of the bone layer was relatively dense, while the structure of the middle layer and the cartilage layer was relatively loose. The pore structures in the layers were connected to each other and all had the multi-dimensional characteristics. The porosity of cartilage layer, middle layer, and bone layer of the scaffolds were 93.55%±2.90%, 93.55%±4.10%, and 50.28%±3.20%, respectively; the porosity of the bone layer was significantly lower than that of cartilage layer and middle layer (P<0.05), but no significant difference was found between cartilage layer and middle layer (P>0.05). The pore size of the three layers were (239.66±35.28), (153.24±19.78), and (82.72±16.94) μm, respectively, showing significant differences between layers (P<0.05). The hydrophilic of the three layers were (15.14±3.15), (13.65±2.98), and (5.32±1.87) mL/g, respectively; the hydrophilic of the bone layer was significantly lower than that of cartilage layer and middle layer (P<0.05), but no significant difference was found between cartilage layer and middle layer (P>0.05). The compression modulus of the three layers were (51.36±13.25), (47.93±12.74), and (155.18±19.62) kPa, respectively; and compression modulus of the bone layer was significantly higher than that of cartilage layer and middle layer (P<0.05), but no significant difference was found between cartilage layer and middle layer (P>0.05). The osteochondral integration of multi-layered scaffold was tightly bonded with each layer. The layer adhesive strength between the cartilage layer and the middle layer was (18.21±5.16) kPa, and the layer adhesive strength between the middle layer and the bone layer was (16.73±6.38) kPa, showing no significant difference (t=0.637, P=0.537). MTT assay showed that L929 cells grew well on the scaffolds, indicating no scaffold cytotoxicity. GFP-labeled rat BMSCs grew evenly on the scaffolds, indicating scaffold has excellent biocompatibility.ConclusionThe advantages of three layers which have different performance of the tissue engineered osteochondral integration of multi-layered scaffold is achieved double biomimetics of structure and composition, lays a foundation for further research of animal in vivo experiment, meanwhile, as an advanced and potential strategy for osteochondral defect repair.

    Release date:2018-04-03 09:11 Export PDF Favorites Scan
  • Cytotoxicity in Vitro of a Noval Ni-free ZrCuFeAlAg Bulk Metallic Glass

    This paper is to evaluate the biocompatibility and cytotoxicity of a new Ni-free Zr-based bulk metallic glass (BMG), Zr60.14Cu22.31Fe4.85Al9.7Ag3, by comparing it with conventional Ti6Al4V alloy. According to ISO 10993-5:1999 and GB/T 16886.5-1997 standards, Zr60.14Cu22.31Fe4.85Al9.7Ag3, pure Zr and Ti6Al4V materials were extracted with surface area of sample/volume of medium ratio being 1 cm2/mL and 0.5 cm2/mL, respectively. The viabilities of MG-63 cells (Human osteosarcoma cell line) cultured in the BMG medium extracts for 1, 3 and 5 days were determined by CCK-8 assay. The cellular morphology of MG-63 cells cultured on the surface of samples for 3 days was tested through laser scanning confocal microscopy (LSCM) and scanning electron microscopy (SEM). The relative growth rate (RGR) of MG-63 cells cultured in Zr60.14Cu22.31 Fe4.85 Al9.7Ag3 and pure Zr were both more than 85%, indicating that the cytotoxicity of BMG was relatively low and met the national biomedical material eligibility standard. There was insignificant difference in the morphology of MG-63 cells cultured in the BMG medium extracts and the control group through LSCM and SEM, which showed the BMG had excellent biological compatibility. The Zr-based bulk metallic glass Zr60.14Cu22.31Fe4.85Al9.7Ag3 and the conventional Ti6Al4V alloy both had no obvious cytotoxicity to MG-63 cells. These results provided evidence that the new Zr-based bulk metallic glass could be potential replacement material for the orthopedic surgical implant.

    Release date: Export PDF Favorites Scan
  • Interpretation of Hemoadsorption: Consensus Report of the 30th Acute Disease Quality Initiative Workgroup

    This article aims to interpret the consensus report of the 30th Acute Disease Quality Initiative (ADQI) workgroup on hemoadsorption (HA) technology, providing reference for clinical practice and research. HA has shown therapeutic advantages in various diseases. The ADQI workgroup assessed the research progress of HA technology, confirming its clinically acceptable short-term biocompatibility, safety, and technical feasibility, as well as experimental demonstration of specified target molecule removal. Preliminary studies have shown a potential benefit of endotoxin-based HA in sepsis. However, due to insufficient clinical evidence, HA is still considered an experimental intervention. The ADQI consensus report focuses on filling existing knowledge gaps, pointing out future research directions, and providing important guidance for the clinical application and further research of HA technology.

    Release date:2024-08-21 02:11 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content