ObjectiveTo compare the strength difference between the interfacial screw and the interfacial screw combined with bone tunnel crossing technology to fix the tibial end of ligament during anterior cruciate ligament (ACL) reconstruction through the biomechanical test.MethodsTwenty fresh frozen pig tibia were randomly divided into two groups (n=10) to prepare ACL reconstruction models. The graft tendons in the experimental group were fixed with interfacial screw combined with bone tunnel crossing technology, and the graft tendons in the control group were fixed with interfacial screw. The two groups of specimens were fixed in the high-frequency dynamic mechanics test system M-3000, and the length change (displacement), ultimate load, and stiffness of graft tendons were measured through the reciprocating test and load-failure test.ResultsThe results of reciprocating test showed that the displacement of the experimental group was (3.06±0.58) mm, and that of the control group was (2.82±0.46) mm, and there was no significant difference between the two groups (t=0.641, P=0.529). The load-failure test results showed that the stiffness of the experimental group and the control group were (95.39±13.63) and (91.38±14.28) N/mm, respectively, with no significant difference (t=1.021, P=0.321). The ultimate load of the experimental group was (743.15±173.96) N, which was significantly higher than that of the control group (574.70±74.43) N (t=2.648, P=0.016).ConclusionIn ACL reconstruction, the fixation strength of tibial end with interface screw combined with bone tunnel crossing technology is obviously better than that of interface screw alone.
In the study of oral orthodontics, the dental tissue models play an important role in finite element analysis results. Currently, the commonly used alveolar bone models mainly have two kinds: the uniform and the non-uniform models. The material of the uniform model was defined with the whole alveolar bone, and each mesh element has a uniform mechanical property. While the material of the elements in non-uniform model was differently determined by the Hounsfield unit (HU) value of computed tomography (CT) images where the element was located. To investigate the effects of different alveolar bone models on the biomechanical responses of periodontal ligament (PDL), a clinical patient was chosen as the research object, his mandibular canine, PDL and two kinds of alveolar bone models were constructed, and intrusive force of 1 N and moment of 2 Nmm were exerted on the canine along its root direction, respectively, which were used to analyze the hydrostatic stress and the maximal logarithmic principal strain of PDL under different loads. Research results indicated that the mechanical responses of PDL had been affected by alveolar bone models, no matter the canine translation or rotation. Compared to the uniform model, if the alveolar bone was defined as the non-uniform model, the maximal stress and strain of PDL were decreased by 13.13% and 35.57%, respectively, when the canine translation along its root direction; while the maximal stress and strain of PDL were decreased by 19.55% and 35.64%, respectively, when the canine rotation along its root direction. The uniform alveolar bone model will induce orthodontists to choose a smaller orthodontic force. The non-uniform alveolar bone model can better reflect the differences of bone characteristics in the real alveolar bone, and more conducive to obtain accurate analysis results.
In the present study, a finite element model of L4-5 lumbar motion segment was established based on the CT images and a combination with image processing software, and the analysis of lumbar biomechanical characteristics was conducted on the proposed model according to different cases of flexion, extension, lateral bending and axial rotation. Firstly, the CT images of lumbar segment L4 to L5 from a healthy volunteer were selected for a three dimensional model establishment which was consisted of cortical bone, cancellous bone, posterior structure, annulus, nucleus pulposus, cartilage endplate, ligament and facet joint. The biomechanical analysis was then conducted according to different cases of flexion, extension, lateral bending and axial rotation. The results showed that the established finite element model of L4-5 lumbar segment was realistic and effective. The axial displacement of the proposed model was 0.23, 0.47, 0.76 and 1.02 mm, respectively under the pressure of 500, 1 000, 1 500 and 2 000 N, which was similar to the previous studies in vitro experiments and finite element analysis of other people under the same condition. The stress distribution of the lumbar spine and intervertebral disc accorded with the biomechanical properties of the lumbar spine under various conditions. The established finite element model has been proved to be effective in simulating the biomechanical properties of lumbar spine, and therefore laid a good foundation for the research of the implants of biomechanical properties of lumbar spine.
ObjectiveTo understand risk factors of abdominal aortic aneurysm (AAA) rupture and the latest progress.MethodThe domestic and foreign related literatures on risk factors affecting AAA rupture were retrieved and reviewed.ResultsBesides some definite risk factors of AAA rupture, including age, gender, hypertension, smoking, family history, complications (such as diabetes mellitus, hypertension, dyslipidemia, etc.), the biomechanical factor was the crucial factor of AAA rupture, including the aortic compliance, aortic wall peak value of pressure, aortic wall calcification, and hemodynamics. The latest imaging methods such as the high resolution ultrasound, function and molecular imaging, and phase contrast magnetic resonance imaging could provide technical supports for the prediction of AAA rupture.ConclusionsThere are many risk factors affecting AAA rupture. Clinicians might prevent and make individualize treatment for AAA rupture according to its risk factors, and risks of AAA rupture could be more accurately assessed with help of new medical imaging examination.
A measurement system based on the image processing technology and developed by LabVIEW was designed to quickly obtain the range of motion (ROM) of spine. NI-Vision module was used to pre-process the original images and calculate the angles of marked needles in order to get ROM data. Six human cadaveric thoracic spine segments T7-T10 were selected to carry out 6 kinds of loads, including left/right lateral bending, flexion, extension, cis/counterclockwise torsion. The system was used to measure the ROM of segment T8-T9 under the loads from 1 N·m to 5 N·m. The experimental results showed that the system is able to measure the ROM of the spine accurately and quickly, which provides a simple and reliable tool for spine biomechanics investigators.
Finite element (FE) model of thorax with high biofidelity is one of the most important methods to investigate thoracic injury mechanism because of the absence of pediatric cadaver experiments. Based on the validated thorax finite element model, the FE models with equivalent muscles and real geometric muscles were developed respectively, and the effect of muscle biofidelity on thoracic injury was analyzed with reconstructing pediatric cadaver thorax impact experiments. The simulation results showed that the thoracic impact force, the maximum displacement and the maximum von-Mises stress of FE models with equivalent muscles were slightly greater than those from FE models with real geometric muscles, and the maximum principal strains of heart and lung were a little lower. And the correlation coefficient between cadaver corridor and FE model with real muscles was also greater than that between cadaver corridor and FE model with equivalent muscles. As a conclusion, the FE models with real geometric muscles can accurately reflect the biomechanical response of thorax during the impact.
Objective To investigate the effects of percutaneous cement discoplasty (PCD) and percutaneous cement interbody fusion (PCIF) on spinal stability by in vitro biomechanical tests. Methods Biomechanical test was divided into intact (INT) group, percutaneous lumbar discectomy (PLD) group, PCD group, and PCIF group. Six specimens of L4, 5 (including vertebral bodies and intervertebral discs) from fresh male cadavers were taken to prepare PLD, PCD, and PCIF specimens, respectively. Before treatment and after the above treatments, the MTS multi-degree-of-freedom simulation test system was used to conduct the biomechanical test. The intervertebral height of the specimen was measured before and after the axial loading of 300 N, and the difference was calculated. The range of motion (ROM) and stiffness of the spine in flexion, extension, left/right bending, and left/right rotation under a torque of 7.5 Nm were calculated. Results After axial loading, the change of intervertebral height in PLD group was more significant than that in other three groups (P<0.05). Compared with INT group, the ROM in all directions significantly increased and the stiffness significantly decreased in PLD group (P<0.05). Compared with INT group, the ROM of flexion, extension, and left/right rotation in PCD group significantly increased and the stiffness significantly decreased (P<0.05); compared with PLD group, the ROM of flexion, extension, and left/right bending in PCD group significantly decreased and the stiffness significantly increased (P<0.05). Compared with INT group, ROM of left/right bending in PCIF group significantly decreased and stiffness significantly increased (P<0.05); compared with PLD group, the ROM in all directions significantly decreased and the stiffness significantly increased (P<0.05); compared with PCD group, the ROM of flexion, left/right bending, and left/right rotation significantly decreased and stiffness significantly increased (P<0.05). Conclusion Both PCD and PCIF can provide good biomechanical stability. The former mainly affects the stiffness in flexion, extension, and bending, while the latter is more restrictive on lumbar ROM in all directions, especially in bending and rotation.
Objective To investigate ideal screw implant angle in reconstruction of tibiofibular syndesmosis injury by using a biomechanical test. Methods A total of 24 ankle specimens from adult cadavers were used as the tibiofibular syndesmosis injury model. According to the angle of screw placement, the tibiofibular syndesmosis injury models were randomly divided into groups A (0°), B (10°-15°), C (20°-25°), and D (30°-35°), and the screws were placed at a level 2 cm proximal to the ankle joint. The displacement of fibula was measured by biomechanical testing machine at neutral, dorsiflexion (10°), plantar flexion (15°), varus (10°), and valgus (15°) positions, with axial load of 0-700 N (pressure separation test). The displacement of fibula was also measured at neutral position by applying 0-5 N·m torque load during internal and external rotation (torsional separation test). Results In the pressure separation test, group C exhibited the smallest displacement under different positions and load conditions. At neutral position, significant differences were observed (P<0.05) between group A and group C under load of 300-700 N, as well as between group B and group C under all load conditions. At dorsiflexion position, significant differences were observed (P<0.05) between group A and group C under load of 500-700 N, as well as between groups B, D and group C under all load conditions, and the displacements under all load conditions were significantly smaller in group A than in group B (P<0.05). At plantar flexion position, significant differences were observed (P<0.05) between group D and group C under all load conditions. At valgus position, significant differences were observed (P<0.05) between group A and group C under load of 400-700 N, as well as between groups B, D and group C under all load conditions. In the torsional separation test, group C exhibited the smallest displacement and group B had the largest displacement under different load conditions. During internal rotation, significant differences were observed (P<0.05) between group B and group C under all load conditions, as well as between group D and group C at load of 3-5 N·m. During external rotation, significant differences were observed between groups B, D and group C under all load conditions (P<0.05). No significant difference was detected between groups at the remaining load conditions (P>0.05). ConclusionThe ideal screw implant angle in reconstruction of tibiofibular syndesmosis injury was 20°-25°, which has a small displacement of fibula.
This article reviews the progress of biomechanical studies on anterior cervical fusion and nonfusion surgery in recent years. The similarities and differences between animal and human cervical spines as well as the major three biomechanical test methods are introduced. Major progresses of biomechanical evaluation in anterior cervical fusion and nonfusion devices, hybrid surgery, coupled motion and biomechanical parameters, such as the instant center of rotation, are classified and summarized. Future development of loading method, multilevel hybrid surgery and coupling character are also discussed.
Objective To investigate the effect of Navio robot-assisted unicompartmental knee arthroplasty (UKA) on the biomechanics of knee joint during sitting-up movement, and to determine whether UKA can maintain the biomechanical characteristics of knee joint. Methods The clinical data of 8 patients with medial compartment osteoarthritis treated with medial fixed platform of Navio robot-assisted UKA between January 2018 and January 2019 and had the complete follow-up data were retrospectively analyzed. There were 4 males and 4 females; the age ranged from 58 to 67 years, with an average of 62.3 years. The disease duration was 6-18 months, with an average of 13 months. The varus deformity ranged from 4° to 6°, with an average of 5°; the knee flexion range of motion was 0°-130°, with an average of 110°. All patients had no extension limitation. The imaging data of bilateral knees during sitting-up movement were collected by biplane C-arm X-ray machine at 3 weeks before operation and 7 months after operation. The three-dimensional models of femur and tibia were established by dual-energy CT scanning, and the three-dimensional models of femur and tibia were matched and synchronized with the femur and tibia in X-ray film by automatic matching tracer software. The biomechanical parameters of femur and tibia were measured, including internal rotation/external rotation, varus/valgus, forward/backward displacement of medial and lateral tibia contact center, and lateral compartment joint space. Results Eight patients were followed up 5-7 months, with an average of 6.4 months. In the comparison of the affected side before and after operation, except for the difference of varus/valgus which was significant (t=4.959, P=0.002), the differences in other indicators was not significant (P>0.05). There were significant differences in varus/valgus and internal rotation/external rotation between healthy and affected sides at 3 weeks before operation (P<0.05), and the differences in other indicators was not significant (P>0.05). At 7 months after operation, the difference in the forward and backward displacement of medial tibia contact center was significant (t=3.798, P=0.007), and the differences in other indicators was not significant (P>0.05). Conclusion UKA can effectively correct the varus and valgus of the knee joint, and restore the rotational biomechanical characteristics of the affected knee joint. It does not affect the establishment of the lateral compartment joint space, but the medial and lateral tibia contact center still changes.