west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "clustering" 18 results
  • Automatic Sleep Stage Classification Based on an Improved K-means Clustering Algorithm

    Sleep stage scoring is a hotspot in the field of medicine and neuroscience. Visual inspection of sleep is laborious and the results may be subjective to different clinicians. Automatic sleep stage classification algorithm can be used to reduce the manual workload. However, there are still limitations when it encounters complicated and changeable clinical cases. The purpose of this paper is to develop an automatic sleep staging algorithm based on the characteristics of actual sleep data. In the proposed improved K-means clustering algorithm, points were selected as the initial centers by using a concept of density to avoid the randomness of the original K-means algorithm. Meanwhile, the cluster centers were updated according to the 'Three-Sigma Rule' during the iteration to abate the influence of the outliers. The proposed method was tested and analyzed on the overnight sleep data of the healthy persons and patients with sleep disorders after continuous positive airway pressure (CPAP) treatment. The automatic sleep stage classification results were compared with the visual inspection by qualified clinicians and the averaged accuracy reached 76%. With the analysis of morphological diversity of sleep data, it was proved that the proposed improved K-means algorithm was feasible and valid for clinical practice.

    Release date:2016-10-24 01:24 Export PDF Favorites Scan
  • A Modeling Method for Human Standing Balance System Based on T-S Fuzzy Identification

    In order to develop safe training intensity and training methods for the passive balance rehabilitation training system, we propose in this paper a mathematical model for human standing balance adjustment based on T-S fuzzy identification method. This model takes the acceleration of a multidimensional motion platform as its inputs, and human joint angles as its outputs. We used the artificial bee colony optimization algorithm to improve fuzzy C-means clustering algorithm, which enhanced the efficiency of the identification for antecedent parameters. Through some experiments, the data of 9 testees were collected, which were used for model training and model results validation. With the mean square error and cross-correlation between the simulation data and measured data, we concluded that the model was accurate and reasonable.

    Release date: Export PDF Favorites Scan
  • IC-kmedoids: A Clustering Algorithm for RNA Secondary Structure Prediction

    Due to the minimum free energy model, it is very important to predict the RNA secondary structure accurately and efficiently from the suboptimal foldings. Using clustering techniques in analyzing the suboptimal structures could effectively improve the prediction accuracy. An improved k-medoids cluster method is proposed to make this a better accuracy with the RBP score and the incremental candidate set of medoids matrix in this paper. The algorithm optimizes initial medoids through an expanding medoids candidate sets gradually.The predicted results indicated this algorithm could get a higher value of CH and significantly shorten the time for calculating clustering RNA folding structures.

    Release date:2021-06-24 10:16 Export PDF Favorites Scan
  • Resting-state electroencephalogram relevance state recognition of Parkinson’s disease based on dynamic weighted symbolic mutual information and k-means clustering

    At present, the incidence of Parkinson’s disease (PD) is gradually increasing. This seriously affects the quality of life of patients, and the burden of diagnosis and treatment is increasing. However, the disease is difficult to intervene in early stage as early monitoring means are limited. Aiming to find an effective biomarker of PD, this work extracted correlation between each pair of electroencephalogram (EEG) channels for each frequency band using weighted symbolic mutual information and k-means clustering. The results showed that State1 of Beta frequency band (P = 0.034) and State5 of Gamma frequency band (P = 0.010) could be used to differentiate health controls and off-medication Parkinson’s disease patients. These findings indicated that there were significant differences in the resting channel-wise correlation states between PD patients and healthy subjects. However, no significant differences were found between PD-on and PD-off patients, and between PD-on patients and healthy controls. This may provide a clinical diagnosis reference for Parkinson’s disease.

    Release date:2023-02-24 06:14 Export PDF Favorites Scan
  • Clustering analysis of risk factors in high-incidence areas of esophageal cancer in Yanting county

    Objective To investigate the dietary patterns of rural residents in the high-incidence areas of esophageal cancer (EC), and to explore the clustering and influencing factors of risk factors associated with high-incidence characteristics. Methods A special structured questionnaire was applied to conduct a face-to-face survey on the dietary patterns of rural residents in Yanting county of Sichuan Province from July to August 2021. Univariate and multivariate logistic regression models were used to analyze the influencing factors of risk factor clustering for EC. Results There were 838 valid questionnaires in this study. A total of 90.8% of rural residents used clean water such as tap water. In the past one year, the people who ate fruits and vegetables, soybean products, onions and garlic in high frequency accounted for 69.5%, 32.8% and 74.5%, respectively; the people who ate kimchi, pickled vegetables, sauerkraut, barbecue, hot food and mildew food in low frequency accounted for 59.2%, 79.6%, 68.2%, 90.3%, 80.9% and 90.3%, respectively. The clustering of risk factors for EC was found in 73.3% of residents, and the aggregation of two risk factors was the most common mode (28.2%), among which tumor history and preserved food was the main clustering pattern (4.6%). The logistic regression model revealed that the gender, age, marital status and occupation were independent influencing factors for the risk factors clustering of EC (P<0.05). Conclusion A majority of rural residents in high-incidence areas of EC in Yanting county have good eating habits, but the clustering of some risk factors is still at a high level. Gender, age, marital status, and occupation are influencing factors of the risk factors clustering of EC.

    Release date:2024-02-20 04:11 Export PDF Favorites Scan
  • Characteristics and countermeasures of nursing needs in ophthalmic day surgery patients based on cluster analysis

    Objective To classify the nursing needs of patients undergoing ophthalmic day surgery, to understand the characteristics and needs of different patient groups, and propose specific nursing strategies to further improve the nursing quality of the ophthalmic day wards. Methods A retrospective review was conducted on all archived electronic medical records of patients in the Ophthalmology Day Ward of Beijing Tongren Hospital affiliated to the Capital Medical University from January to September 2023. Statistical description and cluster analysis were used to analyze and cluster all data. Results A total of 52049 patients were included, with an average age of (57.11±19.61) years. The number of nursing items required was 0 for 3104 patients (5.96%), 1 for 9158 patients (17.59%), 2 for 25428 patients (48.85%), 3 for 8812 patients (16.93%), 4 for 5442 patients (10.46%), and 5-11 for 105 patients (0.20%). The number of patients’ comorbidities was 0 for 38653 patients (74.26%), 1 for 10896 patients (20.93%), 2 for 2449 patients (4.71%), and 3-11 for 51 patients (0.10%). Using the number of comorbidities, total required nursing care items, and age as clustering variables, the 52049 patients were divided into 3 groups: low nursing demand group with 11817 patients (22.70%), medium nursing demand group with 24466 patients (47.01%), and high nursing demand group with 15766 patients (30.29%). The results showed that both patient age and the number of comorbidities were closely related to the number of nursing care items needed. Conclusion Classifying and analyzing the nursing needs of patients undergoing ophthalmic day surgery can help understand the needs of different categories of patients, improve nursing strategies specifically, provide support for further improving the accuracy and quality of ophthalmic day care services, and provide reference for clinical nursing work.

    Release date:2024-11-27 02:31 Export PDF Favorites Scan
  • Interpretation of guideline for multi-dimensional and multi-criteria evaluation for Chinese patent medicine: establishment of an evaluation model

    Our team proposed and constructed an Expert-knowledge and Data-driven Comprehensive Evaluation Model of Chinese Patent Medicine (EDCEM-CPM) using the machine learning algorithm. This model could improve the system of the comprehensive evaluation of the Chinese patent medicine in technology and provide measurement tools for Chinese patent medicine according to its characteristics. The model evaluates the multi-dimensional value of Chinese patent medicine by data pre-treatment, clustering algorithms, and data training steps, such as automatic learning weighting. This evaluation model is already in practice. In this paper, we introduced the establishment of the model with the calculation process for reference.

    Release date:2022-11-14 09:36 Export PDF Favorites Scan
  • Detection of carotid intima and media thicknesses based on ultrasound B-mode images clustered with Gaussian mixture model

    In clinic, intima and media thickness are the main indicators for evaluating the development of atherosclerosis. At present, these indicators are measured by professional doctors manually marking the boundaries of the inner and media on B-mode images, which is complicated, time-consuming and affected by many artificial factors. A grayscale threshold method based on Gaussian Mixture Model (GMM) clustering is therefore proposed to detect the intima and media thickness in carotid arteries from B-mode images in this paper. Firstly, the B-mode images are clustered based on the GMM, and the boundary between the intima and media of the vessel wall is then detected by the gray threshold method, and finally the thickness of the two is measured. Compared with the measurement technique using the gray threshold method directly, the clustering of B-mode images of carotid artery solves the problem of gray boundary blurring of inner and middle membrane, thereby improving the stability and detection accuracy of the gray threshold method. In the clinical trials of 120 healthy carotid arteries, means of 4 manual measurements obtained by two experts are used as reference values. Experimental results show that the normalized root mean square errors (NRMSEs) of the estimated intima and media thickness after GMM clustering were 0.104 7 ± 0.076 2 and 0.097 4 ± 0.068 3, respectively. Compared with the results of the direct gray threshold estimation, means of NRMSEs are reduced by 19.6% and 22.4%, respectively, which indicates that the proposed method has higher measurement accuracy. The standard deviations are reduced by 17.0% and 21.7%, respectively, which indicates that the proposed method has better stability. In summary, this method is helpful for early diagnosis and monitoring of vascular diseases, such as atherosclerosis.

    Release date:2021-02-08 06:54 Export PDF Favorites Scan
  • Study of clustered damage in DNA after proton irradiation based on density-based spatial clustering of applications with noise algorithm

    The deoxyribonucleic acid (DNA) molecule damage simulations with an atom level geometric model use the traversal algorithm that has the disadvantages of quite time-consuming, slow convergence and high-performance computer requirement. Therefore, this work presents a density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm based on the spatial distributions of energy depositions and hydroxyl radicals (·OH). The algorithm with probability and statistics can quickly get the DNA strand break yields and help to study the variation pattern of the clustered DNA damage. Firstly, we simulated the transportation of protons and secondary particles through the nucleus, as well as the ionization and excitation of water molecules by using Geant4-DNA that is the Monte Carlo simulation toolkit for radiobiology, and got the distributions of energy depositions and hydroxyl radicals. Then we used the damage probability functions to get the spatial distribution dataset of DNA damage points in a simplified geometric model. The DBSCAN clustering algorithm based on damage points density was used to determine the single-strand break (SSB) yield and double-strand break (DSB) yield. Finally, we analyzed the DNA strand break yield variation trend with particle linear energy transfer (LET) and summarized the variation pattern of damage clusters. The simulation results show that the new algorithm has a faster simulation speed than the traversal algorithm and a good precision result. The simulation results have consistency when compared to other experiments and simulations. This work achieves more precise information on clustered DNA damage induced by proton radiation at the molecular level with high speed, so that it provides an essential and powerful research method for the study of radiation biological damage mechanism.

    Release date:2019-08-12 02:37 Export PDF Favorites Scan
  • Image segmentation and classification of cytological cells based on multi-features clustering and chain splitting model

    The diagnosis of pancreatic cancer is very important. The main method of diagnosis is based on pathological analysis of microscopic image of Pap smear slide. The accurate segmentation and classification of images are two important phases of the analysis. In this paper, we proposed a new automatic segmentation and classification method for microscopic images of pancreas. For the segmentation phase, firstly multi-features Mean-shift clustering algorithm (MFMS) was applied to localize regions of nuclei. Then, chain splitting model (CSM) containing flexible mathematical morphology and curvature scale space corner detection method was applied to split overlapped cells for better accuracy and robustness. For classification phase, 4 shape-based features and 138 textural features based on color spaces of cell nuclei were extracted. In order to achieve optimal feature set and classify different cells, chain-like agent genetic algorithm (CAGA) combined with support vector machine (SVM) was proposed. The proposed method was tested on 15 cytology images containing 461 cell nuclei. Experimental results showed that the proposed method could automatically segment and classify different types of microscopic images of pancreatic cell and had effective segmentation and classification results. The mean accuracy of segmentation is 93.46%±7.24%. The classification performance of normal and malignant cells can achieve 96.55%±0.99% for accuracy, 96.10%±3.08% for sensitivity and 96.80%±1.48% for specificity.

    Release date:2017-08-21 04:00 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content