Objective To systematically evaluate the diagnostic value of artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps. Methods Pubmed, Embase, Web of Science, Cochrane Library, SinoMed, China National Knowledge Infrastructure, Chongqing VIP and Wanfang databases were searched. The diagnostic trials of the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps were comprehensively searched. The search time limit was from January 1, 2000 to October 31, 2022. The included studies were evaluated according to the Quality Assessment of Diagnostic Accuracy Studies-2, and the data were meta-analysed with RevMan 5.3, Meta-Disc 1.4 and Stata 13.0 statistical softwares. Results Finally, 11 articles were included, including 2178 patients. Meta-analysis results of the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps showed that the pooled sensitivity was 0.91, the pooled specificity was 0.88, the pooled positive likelihood ratio was 7.41, the pooled negative likelihood ratio was 0.10, the pooled diagnostic odds ratio was 76.45, and the area under the summary receiver operating characteristic curve was 0.957. Among them, 5 articles reported the diagnosis of small adenomatous polyps (diameter <5 mm) by the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system. The results showed that the pooled sensitivity and the pooled specificity were 0.93 and 0.91, respectively, and the area under the summary receiver operating characteristic curve was 0.971. Five articles reported the accuracy of endoscopic diagnosis for adenomatous polyps of those with insufficient experience. The results showed that the pooled sensitivity and the pooled specificity were 0.84 and 0.76, respectively. The area under the summary receiver operating characteristic curve was 0.848. Compared with the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system, the difference was statistically significant (Z=1.979, P=0.048). Conclusion The artificial intelligence assisted narrow-band imaging endoscopy diagnostic system has a high diagnostic accuracy, which can significantly improve the diagnostic accuracy for colorectal adenomatous polyps of those with insufficient endoscopic experience, and can effectively compensate for the adverse impact of their lack of endoscopic experience.
Inferior myocardial infarction is an acute ischemic heart disease with high mortality, which is easy to induce life-threatening complications such as arrhythmia, heart failure and cardiogenic shock. Therefore, it is of great clinical value to carry out accurate and efficient early diagnosis of inferior myocardial infarction. Electrocardiogram is the most sensitive means for early diagnosis of inferior myocardial infarction. This paper proposes a method for detecting inferior myocardial infarction based on densely connected convolutional neural network. The method uses the original electrocardiogram (ECG) signals of serially connected Ⅱ, Ⅲ and aVF leads as the input of the model and extracts the robust features of the ECG signals by using the scale invariance of the convolutional layers. The characteristic transmission of ECG signals is enhanced by the dense connectivity between different layers, so that the network can automatically learn the effective features with strong robustness and high recognition, so as to achieve accurate detection of inferior myocardial infarction. The Physikalisch Technische Bundesanstalt diagnosis public ECG database was used for verification. The accuracy, sensitivity and specificity of the model reached 99.95%, 100% and 99.90%, respectively. The accuracy, sensitivity and specificity of the model are also over 99% even though the noise exists. Based on the results of this study, it is expected that the method can be introduced in the clinical environment to help doctors quickly diagnose inferior myocardial infarction in the future.
Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder. Due to the subtlety of symptoms in the early stages of AD, rapid and accurate clinical diagnosis is challenging, leading to a high rate of misdiagnosis. Current research on early diagnosis of AD has not sufficiently focused on tracking the progression of the disease over an extended period in subjects. To address this issue, this paper proposes an ensemble model for assisting early diagnosis of AD that combines structural magnetic resonance imaging (sMRI) data from two time points with clinical information. The model employs a three-dimensional convolutional neural network (3DCNN) and twin neural network modules to extract features from the sMRI data of subjects at two time points, while a multi-layer perceptron (MLP) is used to model the clinical information of the subjects. The objective is to extract AD-related features from the multi-modal data of the subjects as much as possible, thereby enhancing the diagnostic performance of the ensemble model. Experimental results show that based on this model, the classification accuracy rate is 89% for differentiating AD patients from normal controls (NC), 88% for differentiating mild cognitive impairment converting to AD (MCIc) from NC, and 69% for distinguishing non-converting mild cognitive impairment (MCInc) from MCIc, confirming the effectiveness and efficiency of the proposed method for early diagnosis of AD, as well as its potential to play a supportive role in the clinical diagnosis of early Alzheimer's disease.
This paper performs a comprehensive study on the computer-aided detection for the medical diagnosis with deep learning. Based on the region convolution neural network and the prior knowledge of target, this algorithm uses the region proposal network, the region of interest pooling strategy, introduces the multi-task loss function: classification loss, bounding box localization loss and object rotation loss, and optimizes it by end-to-end. For medical image it locates the target automatically, and provides the localization result for the next stage task of segmentation. For the detection of left ventricular in echocardiography, proposed additional landmarks such as mitral annulus, endocardial pad and apical position, were used to estimate the left ventricular posture effectively. In order to verify the robustness and effectiveness of the algorithm, the experimental data of ultrasonic and nuclear magnetic resonance images are selected. Experimental results show that the algorithm is fast, accurate and effective.
Alzheimer's disease (AD) is a typical neurodegenerative disease, which is clinically manifested as amnesia, loss of language ability and self-care ability, and so on. So far, the cause of the disease has still been unclear and the course of the disease is irreversible, and there has been no cure for the disease yet. Hence, early prognosis of AD is important for the development of new drugs and measures to slow the progression of the disease. Mild cognitive impairment (MCI) is a state between AD and healthy controls (HC). Studies have shown that patients with MCI are more likely to develop AD than those without MCI. Therefore, accurate screening of MCI patients has become one of the research hotspots of early prognosis of AD. With the rapid development of neuroimaging techniques and deep learning, more and more researchers employ deep learning methods to analyze brain neuroimaging images, such as magnetic resonance imaging (MRI), for early prognosis of AD. Hence, in this paper, a three-dimensional multi-slice classifiers ensemble based on convolutional neural network (CNN) and ensemble learning for early prognosis of AD has been proposed. Compared with the CNN classification model based on a single slice, the proposed classifiers ensemble based on multiple two-dimensional slices from three dimensions could use more effective information contained in MRI to improve classification accuracy and stability in a parallel computing mode.
Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disease. Neuroimaging based on magnetic resonance imaging (MRI) is one of the most intuitive and reliable methods to perform AD screening and diagnosis. Clinical head MRI detection generates multimodal image data, and to solve the problem of multimodal MRI processing and information fusion, this paper proposes a structural and functional MRI feature extraction and fusion method based on generalized convolutional neural networks (gCNN). The method includes a three-dimensional residual U-shaped network based on hybrid attention mechanism (3D HA-ResUNet) for feature representation and classification for structural MRI, and a U-shaped graph convolutional neural network (U-GCN) for node feature representation and classification of brain functional networks for functional MRI. Based on the fusion of the two types of image features, the optimal feature subset is selected based on discrete binary particle swarm optimization, and the prediction results are output by a machine learning classifier. The validation results of multimodal dataset from the AD Neuroimaging Initiative (ADNI) open-source database show that the proposed models have superior performance in their respective data domains. The gCNN framework combines the advantages of these two models and further improves the performance of the methods using single-modal MRI, improving the classification accuracy and sensitivity by 5.56% and 11.11%, respectively. In conclusion, the gCNN-based multimodal MRI classification method proposed in this paper can provide a technical basis for the auxiliary diagnosis of Alzheimer’s disease.
Sleep apnea (SA) detection method based on traditional machine learning needs a lot of efforts in feature engineering and classifier design. We constructed a one-dimensional convolutional neural network (CNN) model, which consists in four convolution layers, four pooling layers, two full connection layers and one classification layer. The automatic feature extraction and classification were realized by the structure of the proposed CNN model. The model was verified by the whole night single-channel sleep electrocardiogram (ECG) signals of 70 subjects from the Apnea-ECG dataset. Our results showed that the accuracy of per-segment SA detection was ranged from 80.1% to 88.0%, using the input signals of single-channel ECG signal, RR interval (RRI) sequence, R peak sequence and RRI sequence + R peak sequence respectively. These results indicated that the proposed CNN model was effective and can automatically extract and classify features from the original single-channel ECG signal or its derived signal RRI and R peak sequence. When the input signals were RRI sequence + R peak sequence, the CNN model achieved the best performance. The accuracy, sensitivity and specificity of per-segment SA detection were 88.0%, 85.1% and 89.9%, respectively. And the accuracy of per-recording SA diagnosis was 100%. These findings indicated that the proposed method can effectively improve the accuracy and robustness of SA detection and outperform the methods reported in recent years. The proposed CNN model can be applied to portable screening diagnosis equipment for SA with remote server.
The pathogenesis of Alzheimer's disease (AD), a common neurodegenerative disease, is still unknown. It is difficult to determine the atrophy areas, especially for patients with mild cognitive impairment (MCI) at different stages of AD, which results in a low diagnostic rate. Therefore, an early diagnosis model of AD based on 3-dimensional convolutional neural network (3DCNN) and genetic algorithm (GA) was proposed. Firstly, the 3DCNN was used to train a base classifier for each region of interest (ROI). And then, the optimal combination of the base classifiers was determined with the GA. Finally, the ensemble consisting of the chosen base classifiers was employed to make a diagnosis for a patient and the brain regions with significant classification capability were decided. The experimental results showed that the classification accuracy was 88.6% for AD vs. normal control (NC), 88.1% for MCI patients who will convert to AD (MCIc) vs. NC, and 71.3% for MCI patients who will not convert to AD (MCInc) vs. MCIc. In addition, with the statistical analysis of the behavioral domains corresponding to ROIs (i.e. brain regions), besides left hippocampus, medial and lateral amygdala, and left para-hippocampal gyrus, anterior superior temporal sulcus of middle temporal gyrus and dorsal area 23 of cingulate gyrus were also found with GA. It is concluded that the functions of the selected brain regions mainly are relevant to emotions, memory, cognition and the like, which is basically consistent with the symptoms of indifference, memory losses, mobility decreases and cognitive declines in AD patients. All of these show that the proposed method is effective.
The application of minimally invasive surgical tool detection and tracking technology based on deep learning in minimally invasive surgery is currently a research hotspot. This paper firstly expounds the relevant technical content of the minimally invasive surgery tool detection and tracking, which mainly introduces the advantages based on deep learning algorithm. Then, this paper summarizes the algorithm for detection and tracking surgical tools based on fully supervised deep neural network and the emerging algorithm for detection and tracking surgical tools based on weakly supervised deep neural network. Several typical algorithm frameworks and their flow charts based on deep convolutional and recurrent neural networks are summarized emphatically, so as to enable researchers in relevant fields to understand the current research progress more systematically and provide reference for minimally invasive surgeons to select navigation technology. In the end, this paper provides a general direction for the further research of minimally invasive surgical tool detection and tracking technology based on deep learning.
Cardiac auscultation is the basic way for primary diagnosis and screening of congenital heart disease(CHD). A new classification algorithm of CHD based on convolution neural network was proposed for analysis and classification of CHD heart sounds in this work. The algorithm was based on the clinically collected diagnosed CHD heart sound signal. Firstly the heart sound signal preprocessing algorithm was used to extract and organize the Mel Cepstral Coefficient (MFSC) of the heart sound signal in the one-dimensional time domain and turn it into a two-dimensional feature sample. Secondly, 1 000 feature samples were used to train and optimize the convolutional neural network, and the training results with the accuracy of 0.896 and the loss value of 0.25 were obtained by using the Adam optimizer. Finally, 200 samples were tested with convolution neural network, and the results showed that the accuracy was up to 0.895, the sensitivity was 0.910, and the specificity was 0.880. Compared with other algorithms, the proposed algorithm has improved accuracy and specificity. It proves that the proposed method effectively improves the robustness and accuracy of heart sound classification and is expected to be applied to machine-assisted auscultation.