Objective lt;brgt;To evaluated the effect of transpupillary thermotherapy (TTT) on age-related macular degeneration (AMD). lt;brgt; lt;brgt;Methods lt;brgt;Sixty-two cases (62 eyes) of exudative AMD were managed with TTT. Before treatment, 58 cases underwent fundus fluorescein angiography(FFA),42 cases underwent simultaneous indocyanine green angiography (ICGA), and 56 cases underwent optic coherence tomography (OCT).TTT was delivered using a 810 nm diode laser with variable spot sizes 0.5-3.0 mm and power range 60-40 mW,60 seconds duration. Sixty-two cases were followed up for 1-10 months with 4.8 months average. lt;brgt; lt;brgt;Results lt;brgt;The visual acuities of last visit were compared with those before the treatment. The visual acuity was unchanged in 43 cases (69.3%), improved in 15 cases (24.2%), and declined in 4 cases (6.5%). OCT was re-done in 51 cases and compared with OCT images before TTT treatment. The height of macular edema was unchanged in 29 cases (56.9%), decreased in 18 cases (35.3%), and increased in 4 cases (7.8%). The amelioration of visual acuity was compatible with that of macular configuration in the majority of cases (74.5%). Only in 13 cases (25.5%) the amelioration of visual acuity lagged behind that of macular configuration. The re-treatment was performed in 18 cases (29.1%), probably due to insufficiency of laser power. No side-effect was found. lt;brgt; lt;brgt;Conclusion lt;brgt;TTT makes most of the cases of exudative AMD retaining or improving their visual acuity. The employment is secured. Further exploration is needed in order to obtain the parameters of the laser treatment. (Chin J Ocul Fundus Dis, 2002, 18: 180-183)
The therapeutic effect of anti-vascular endothelial growth factor (VEGF) for neovascular age-related macular degeneration (nAMD) was determined by a number of factors. Comprehensive thorough analysis of clinical features, imaging results and treatment response can predict the potential efficacy and possible vision recovery for the patient, and also can optimize the treatment regime to make a personalized therapy plan. Precise medicine with data from genomics, proteomics and metabolomics study will provide more objective and accurate biology basis for individual precise treatment. The future research should focus on comprehensive assessment of factors affecting the efficacy of anti-VEGF therapy, to achieve individualized precise diagnosis and treatment, to improve the therapeutic outcome of nAMD.
Atrophic age-related macular degeneration (AMD) does not show obvious loss of visual function in the early stage, so it is not easy to be taken seriously. In the advanced stage, most of the patients suffered from macular area retinal map atrophy, which affected night vision and central vision. Drugs currently used in clinical or clinical trials to treat atrophic AMD include drugs for improving choroidal perfusion, reducing the accumulation of harmful substances, preventing oxidative stress injury, inhibiting inflammatory reactions, as well as neuroprotectants and lipid metabolism drugs. Stem cell transplantation for atrophic AMD is currently the most promising treatment. In theory, it is feasible to replace atrophic AMD with retinal photoreceptor cells and RPE cells derived from human stem cell differentiation. However, there are still many problems to be solved, such as how to improve the efficiency of directional differentiation of seed cells and how to ensure the safe and effective RPE cell transplantation and survival after transplantation. At present, several studies have found that multiple locus mutations are associated with atrophic AMD, so gene therapy also plays an important role in the development of the disease.
Age-related macular degeneration (AMD) is an age-related neurodegenerative eye disease characterized by degeneration and progressive death of retinal pigment epithelium (RPE) and photoreceptor cells. In recent years, as a new treatment for AMD, stem cell therapy has attracted wide attention in the field of AMD, and has become a current research hotspot. Although stem cell therapy carries risks such as increased incidence of cancer and immune rejection, it significantly promotes damaged photoreceptor cells and retinal cells by differentiating into RPE cells and other retinal cell types, as well as secreting neurotrophic factors and extracellular vesicles. In particular, the development of embryonic stem cell-derived RPE cells, its cryopreservation technology and the advancement of plasmid, adeno-associated virus, Sendai virus and other delivery technologies have laid a solid foundation for stem cell therapy of AMD. As a new method to prevent retinal damage and photoreceptor degeneration, stem cell neuroprotective therapy has shown great potential, and with the continuous maturity and improvement of these technologies, stem cell therapy is expected to provide new ideas for the prevention and treatment of AMD in the future.
Age-related macular degeneration (AMD) is one of the leading irreversible causes of blindness in China. The pathogenesis of AMD is not fully understood at present. Under various stress conditions, cellular senescence is activated, characterized by telomere shortening, mitochondrial dysfunction, DNA damage, and the release of various senescence-related secretory phenotype factors. Senescence is implicated in the pathogenesis of AMD through multiple pathways, contributing to chronic inflammation and the onset and progression of AMD. Mechanisms such as oxidative stress, lipofuscin, β amyloid protein and the membrane attack complex have become hotspots of study in the pathogenesis of AMD. The cyclic guanosine phosphate - adenosine synthase - interferon stimulating factor synthase-stimulator of interferon gene pathway has emerged as a critical signaling pathway in the early development of AMD, providing direction for further research on AMD. Currently, senolytics, selective agents targeting the induction of senescent cell apoptosis, show significant potential in the treatment of AMD. The integration of new technologies with cellular senescence may offer a novel approach to AMD treatment, and intervening in the AMD treatment through anti-cellular senescence pathways holds promising prospects.
OBJECTlVE:To investigate Ihe changes of macuiar lesions in dry type of age re[amd maeuJar clegcneration(AMD)and search for a sensitive melhod for detecting tile development of the disease. METHODS:The fundus fluoreseein angiography(FFA) ,visual acuity,FM 100-hue test and photopie electroretinogram(ERG)were used to examine a series of 60 patients(111 eyes)with dry AMD aged 50~80 years with the visual acuity of le;1.0.The patients were felhwed tip in 3~74 months(average 30.2 months). RESULTS:In 68 eyes undergone FFA examination and followed llp for Ihe average period of 25.6 months ,the macular lesions were found worsened in 25%, The visual acuity in follow-up periods was found decreasing more than 2 lines in 18% of the fotal 111 affectd eyes.There were not any statistically significat difference in photopic ERG between the initial and final cxaminations in 63 eyes tested. The tolal error score of FM 100-hue test had a statistically significant difference between the initial test and the test taken two years afterwards(Plt; 0.01 )in 81 eyes examlnccl. CONCLUSIONS:Most of the macular lesions and visual acuity in dry type of AMD revealed a [avorahle prognosis,but occasionally complicated with ehoroidal neovaseularization. The total error score of FM 100-hue test might be a sensitive method for monitoring the development of dry type of AMD. (Chin J Ocul Fundus Dis,1997,13: 150-152)
Purpose To clarify the relationship between diabetic retinopathy (DR) and maculopathy (DM) and explore the clinical implication of independent graduation of DM. Methods Fundus fluorescein angiography and routine ophthalmological examination were performed on 582 cases of diabetes.Their ocular fundi and macular impairments were graded. Results In general,the severity of diabetic macular impairment was accompanied by retinal involvement,but discrepancy existed between DM and DR.Degree I DM occurred in 5.4% (16/294) among cases without DR,in stage IV DR,degree Ⅲ DM accounted for the most part ,54.5% (116/213).There were still 5.1% (2/39) cases without DM in stage Ⅴ DR. Conclusion The degree of the macular lesions in DM is often not in parallel with the gradation of general affections in retinal tissue other than in macular region in DR,therefore,independentg radation of diabetic maculopathy has its clinical significance for choosing the optimal period of treating maculopathy and preserving the macular function. (Chin J Ocul Fundus Dis,2000,16:153-154)
Vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF) and complements play key roles in the pathogenesis of age-related macular degeneration (AMD). Pegaptanib, the first therapeutic aptamer against VEGF165, has been approved by the Food and Drug Administration (FDA) of US for the treatment of exudative AMD. Another two aptamers E10030 and ARC1905, each target PDGF-B and complement C5 respectively, are undergoing clinical trials. Recent trends to treat AMD are combined therapies targeting multiple key molecules in the pathogenesis of AMD; aptamers against multiple targets may become the preferred drug for AMD.
Objective Bone marrow mesenchymal stem cells (BMSCs) transplantation can potentially regenerate the degenerated intervertebral disc, with the underlying regenerating mechanism remaining largely unknown. To investigate the potential of human BMSCs protecting nucleus pulposus cells (NPCs) from oxidative stress-induced apoptosis in a coculturesystem, and to illustrate the possible mechanisms of BMSCs transplantation for intervertebral disc regeneration. Methods BMSCs collected by density gradient centrifugation in Percoll solution were cultured and sub-cultured till passage 3, and the surface molecules of CD34, CD45, and CD13 were identified. NPCs were isolated by collagenase digestion and the chondrocyte l ike phenotype was confirmed by morphologic observation after HE staining, inverted phase contrast microscope, proteoglycan, and collagen type II expression after toluidine blue and immunocytochemistry staining. The 3rd passage BMSCs and the 1st passage NPCs were divided into four groups: group A, NPCs (1 × 106 cells) were cultured alone without apoptosis inducing (negative control); group B, NPCs (1 × 106 cells) were co-cultured with BMSCs (1 × 106 cells) with apoptosis inducing; group C, NPCs (1 × 106 cells) were co-cultured with BMSCs (3 × 105 cells) with apoptosis inducing; group D, NPCs (1 × 106 cells) were cultured alone with apoptosis inducing (positive control). After 3 or 7 days of culture or co-culture, the NPCs in groups B, C, and D were exposed to 0.1 mmol hydrogen peroxide for 20 minutes to induce apoptosis. With DAPI staining cellular nucleus, Annexin-V/propidium iodide staining cellular membrane for flow cytometry analysis, the apoptosis of NPCs in each group was studied both qual itatively and quantitatively. Besides, the changes in Bax/Bcl-2 gene transcription and Caspase-3 protein content, were analyzed with semi-quantitative RT-PCR and Western blot. Results BMSCs were successfully isolated and CD34-, CD45-, and CD13+ were demonstrated; after isolated from degenerated intervertebral discs and sub-cultured, the spindle-shaped 1st passage NPCs maintained chondrocyte phenotype with the constructive expressions of proteoglycan and collagen type II in cytoplasm. DAPI staining showed the nucleus shrinkage of apoptosis NPCs. Co-cultured with BMSCs for 3 days and 7 days, the apoptosis rates of NPCs in groups B (29.26% ± 8.90% and 18.03% ± 2.25%) and C (37.10% ± 3.28% and 13.93% ± 1.25%) were lower than that in group D (54.90% ± 5.97% and 26.97% ± 3.10%), but higher than that of groupA (15.67% ± 1.74% and 8.87% ± 0.15%); all showing significant differences (P lt; 0.05). Besides, semi-quantitative RT-PCR showed Bcl-2 gene transcription up-regulated (P lt; 0.05) and no significant change of Bax (P gt; 0.05); Western blot result showed that the Caspase-3 protein expression of groups B and C was lower than that of group D, and was higher than that of group A; all showing significant differences (P lt; 0.05). Conclusion In a co-culture system without direct cellular interactions, the oxidative stress-induced apoptosis of human NPCs was amel iorated by BMSCs. The enhanced anti-apoptosis abil ity of NPCs preconditioned by co-culturing with BMSCs might come from the decreased Bax/Bcl-2 gene transcription ratio.
ObjectiveTo analyze the relationship between the bone mineral density (BMD) and lumbar intervertebral disc degeneration in rhesus macaques by using T1ρ-MRI. MethodsTwenty female rhesus macaques at the age of 10.9 years on average (rang, 4-20 years) were selected. The lumbar intervertebral discs were classified by Pfirrmann grading system and the T1ρ relaxation time (T1ρ value) was examined by using MRI (Philips 1.5 Tesla), and then BMD values of the L4,5 vertebrae and femoral ward's triangle were detected by using Osteocore dual energy X-ray absorptiometry. Finally, the relationship of T1ρ value of the lumbar intervertebral discs and Pfirrmann grading with age, weight, BMD of lumbar vertebrae and femoral ward's triangle was analyzed. ResultsThe BMD values of lumbar vertebrae and femoral ward's triangle were (0.64±0.17) g/cm2 and (0.67±0.19) g/cm2 respectively, showing no significant difference (t=2.893, P=0.128). According to Pfirrmann grading system, there were 7 cases of grade I, 8 cases of grade Ⅱ, and 5 cases of grade Ⅲ at L4,5 intervertebral discs. The T1ρ value of the lumbar intervertebral disc was (104.08±18.65) ms; the T1ρ values of grades I, Ⅱ, and Ⅲ were (121.31±13.44), (104.73±15.01), and (77.41±11.87) ms, respectively. There was a negative correlation between T1ρ value and the age and the BMD of lumbar vertebrae and femoral ward's triangle. There was a positive correlation between Pfirrmann grading and the variables as listed above. Significant negative linear correlation was also observed between T1ρ value and Pfirrmann grading. ConclusionThe T1ρ value is a reliable index when quantifying lumbar intervertebral disc degeneration, and there is a significant positive correlation between BMD and lumbar intervertebral disc degeneration in rhesus macaques.