west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "electroencephalogram" 103 results
  • Study on the improvement of brain cognitive function status by mind-control game training

    This study uses mind-control game training to intervene in patients with mild cognitive impairment to improve their cognitive function. In this study, electroencephalogram (EEG) data of 40 participants were collected before and after two training sessions. The continuous complexity of EEG signals was analyzed to assess the status of cognitive function and explore the effect of mind-control game training on the improvement of cognitive function. The results showed that after two training sessions, the continuous complexity of EEG signal of the subject increased (0.012 44 ± 0.000 29, P < 0.05) and amplitude of curve fluctuation decreased gradually, indicating that with increase of training times, the continuous complexity increased significantly, the cognitive function of brain improved significantly and state was stable. The results of this paper may show that mind-control game training can improve the status of the brain cognitive function, which may provide support and help for the future intervention of cognitive dysfunction.

    Release date:2019-06-17 04:41 Export PDF Favorites Scan
  • Quality management of long-term video-EEG monitoring process

    ObjectiveTo summarize the method of quality management in long term video electroencephalogram (VEEG) monitoring process.MethodsTo summarize the VEEG monitoring process in 4 935 patients, the following methods were adopted: adequate preparation before examination, selection of suitable electrode wearing methods, regular inspection of the quality of the lead wire, inspection and observation of whether the electrodes have fallen off, process inspection, behavioral intervention guidance, timely manage the artifacts, pay more attention to the inducted experimental, timely identification of paroxysmal events, standardize the procedures for the management of seizures, standardize the processing of electrode cleaning and disinfection, continuously improve the quality.ResultsFour hundred and tworoy are paroxysmal events of various types occurred during the monitoring period. All of them were handled in time and the patients were all safe. Among these events, 4 children ended the examination in ahead of the normal procedure due to fever, crying or other reasons. two patients were transferred to intensive care unit due to changes in patients ’conditions such as hypopnea and decreased oxygen saturation of artery blood of finger. The remaining 4 829 patients completed VEEG detection for 8 ~ 24 h. and got good quality images.ConclusionsQuality management is a guarantee of qualified, high quality, low artifact EEG reports.

    Release date:2019-03-21 11:04 Export PDF Favorites Scan
  • Cross-subject electroencephalogram emotion recognition based on maximum classifier discrepancy

    Affective brain-computer interfaces (aBCIs) has important application value in the field of human-computer interaction. Electroencephalogram (EEG) has been widely concerned in the field of emotion recognition due to its advantages in time resolution, reliability and accuracy. However, the non-stationary characteristics and individual differences of EEG limit the generalization of emotion recognition model in different time and different subjects. In this paper, in order to realize the recognition of emotional states across different subjects and sessions, we proposed a new domain adaptation method, the maximum classifier difference for domain adversarial neural networks (MCD_DA). By establishing a neural network emotion recognition model, the shallow feature extractor was used to resist the domain classifier and the emotion classifier, respectively, so that the feature extractor could produce domain invariant expression, and train the decision boundary of classifier learning task specificity while realizing approximate joint distribution adaptation. The experimental results showed that the average classification accuracy of this method was 88.33% compared with 58.23% of the traditional general classifier. It improves the generalization ability of emotion brain-computer interface in practical application, and provides a new method for aBCIs to be used in practice.

    Release date:2021-08-16 04:59 Export PDF Favorites Scan
  • Development and Design of Portable Sleep Electroencephalogram Monitoring System

    The growing rate of public health problem for increasing number of people afflicted with poor sleep quality suggests the importance of developing portable sleep electroencephalogram (EEG) monitoring systems. The system could record the overnight EEG signal, classify sleep stages automatically, and grade the sleep quality. We in our laboratory collected the signals in an easy way using a single channel with three electrodes which were placed in frontal position in case of the electrode drop-off during sleep. For a test, either silver disc electrodes or disposable medical electrocardiographic electrodes were used. Sleep EEG recorded by the two types of electrodes was compared to each other so as to find out which type was more suitable. Two algorithms were used for sleep EEG processing, i.e. amplitude-integrated EEG (aEEG) algorithm and sample entropy algorithm. Results showed that both algorithms could perform sleep stage classification and quality evaluation automatically. The present designed system could be used to monitor overnight sleep and provide quantitative evaluation.

    Release date: Export PDF Favorites Scan
  • Epilepsy Electroencephalogram Signal Analysis Based on Improved k-nearest Neighbor Network

    The study of complex networks has become a hot research area of electroencephalogram signal. Electroencephalogram time series generated by the network keeps node information of network, so studying the time series from the network can also achieve the purpose of study epileptic electroencephalogram. In this paper, we propose a method to analyze epileptic electroencephalogram based on time series which is based on improved k-nearest neighbor network. The results of the experiment showed that studying power spectrum of time series from network was easier than power spectrum of time series directly generated from the original brain data to distinguish between normal controls and epileptic patients. In addition, studying the clustering coefficient of improved k-nearest neighbor network was able to distinguish between normal persons and patients with epilepsy. This study can provide important reference for the study of epilepsy and clinical diagnosis.

    Release date:2016-12-19 11:20 Export PDF Favorites Scan
  • Single-channel electroencephalogram signal used for sleep state recognition based on one-dimensional width kernel convolutional neural networks and long-short-term memory networks

    Aiming at the problem that the unbalanced distribution of data in sleep electroencephalogram(EEG) signals and poor comfort in the process of polysomnography information collection will reduce the model's classification ability, this paper proposed a sleep state recognition method using single-channel EEG signals (WKCNN-LSTM) based on one-dimensional width kernel convolutional neural networks(WKCNN) and long-short-term memory networks (LSTM). Firstly, the wavelet denoising and synthetic minority over-sampling technique-Tomek link (SMOTE-Tomek) algorithm were used to preprocess the original sleep EEG signals. Secondly, one-dimensional sleep EEG signals were used as the input of the model, and WKCNN was used to extract frequency-domain features and suppress high-frequency noise. Then, the LSTM layer was used to learn the time-domain features. Finally, normalized exponential function was used on the full connection layer to realize sleep state. The experimental results showed that the classification accuracy of the one-dimensional WKCNN-LSTM model was 91.80% in this paper, which was better than that of similar studies in recent years, and the model had good generalization ability. This study improved classification accuracy of single-channel sleep EEG signals that can be easily utilized in portable sleep monitoring devices.

    Release date:2023-02-24 06:14 Export PDF Favorites Scan
  • Automatic sleep staging model based on single channel electroencephalogram signal

    Sleep staging is the basis for solving sleep problems. There’s an upper limit for the classification accuracy of sleep staging models based on single-channel electroencephalogram (EEG) data and features. To address this problem, this paper proposed an automatic sleep staging model that mixes deep convolutional neural network (DCNN) and bi-directional long short-term memory network (BiLSTM). The model used DCNN to automatically learn the time-frequency domain features of EEG signals, and used BiLSTM to extract the temporal features between the data, fully exploiting the feature information contained in the data to improve the accuracy of automatic sleep staging. At the same time, noise reduction techniques and adaptive synthetic sampling were used to reduce the impact of signal noise and unbalanced data sets on model performance. In this paper, experiments were conducted using the Sleep-European Data Format Database Expanded and the Shanghai Mental Health Center Sleep Database, and achieved an overall accuracy rate of 86.9% and 88.9% respectively. When compared with the basic network model, all the experimental results outperformed the basic network, further demonstrating the validity of this paper's model, which can provide a reference for the construction of a home sleep monitoring system based on single-channel EEG signals.

    Release date:2023-08-23 02:45 Export PDF Favorites Scan
  • Research on automatic removal of ocular artifacts from single channel electroencephalogram signals based on wavelet transform and ensemble empirical mode decomposition

    The brain-computer interface (BCI) systems used in practical applications require as few electroencephalogram (EEG) acquisition channels as possible. However, when it is reduced to one channel, it is difficult to remove the electrooculogram (EOG) artifacts. Therefore, this paper proposed an EOG artifact removal algorithm based on wavelet transform and ensemble empirical mode decomposition. Firstly, the single channel EEG signal is subjected to wavelet transform, and the wavelet components which involve EOG artifact are decomposed by ensemble empirical mode decomposition. Then the predefined autocorrelation coefficient threshold is used to automatically select and remove the intrinsic modal functions which mainly composed of EOG components. And finally the ‘clean’ EEG signal is reconstructed. The comparative experiments on the simulation data and the real data show that the algorithm proposed in this paper solves the problem of automatic removal of EOG artifacts in single-channel EEG signals. It can effectively remove the EOG artifacts when causes less EEG distortion and has less algorithm complexity at the same time. It helps to promote the BCI technology out of the laboratory and toward commercial application.

    Release date:2021-08-16 04:59 Export PDF Favorites Scan
  • EEG-EMG Coherence Analysis of Different Hand Motions in Healthy Subjects

    It is the functional connectivity between motor cortex and muscle that directly relates to the rehabilitation of the dysfunction in upper limbs and neuromuscular activity status, which can be detected by electroencephalogram-electromyography (EEG-EMG) coherence analysis. In this study, based on coherence analysis method, we process the acquisition signals which consist of 9 channel EEG signal from motor cortex and 4 channel EMG signal from forearm, by using 4 groups of hand motions in the healthy subjects, including flexor digitorum, extensor digitorum, wrist flexion, and wrist extension. The results showed that in the β-band, the coherence coefficients between C3 and flexor digitorum (FD) was greater than extensor digitorum (ED) in the right hand flexor digitorum movement; the coherence coefficients between C3 and ED was greater than FD in the right hand extensor digitorum movement; the coherence coefficients between C3 and flexor carpi ulnaris (FCU) was greater than extensor carpi radialis (ECR) in the right hand wrist flexion movement; the coherence coefficients between C3 and ECR was greater than FCU in the right hand wrist extension movement. This analysis provides experimental basis to explore the information decoding of hand motion based on corticomuscular coherence (CMC).

    Release date: Export PDF Favorites Scan
  • Analysis of clinical features, electroencephalogram characteristics and epileptogenic zone location of gelastic seizures

    ObjectiveTo explore the clinical features and EEG features of gelastic seizures, and analyze its value of lateral localization of epileptogenic area. MethodsAll patients with gelastic seizures admitted to the Sanbo Brain Hospital of Capital Medical University between January 2014 and December 2023 were reviewed and analyzed for history, symptomatology, imaging, electroencephalographic features and surgical protocols in patients who met the inclusion criteria and were followed up for at least 1 year, and surgical efficacy was assessed by using the Engel grading. ResultsA total of 51 patients with gelastic seizures were included, there were 32 (62.75%) males and 19 (37.25%) females, 21 (41.18%) with hypothalamic hamartomas (HH) and 30 (58.82%) with non-hypothalamic hamartomas. The age of onset was earlier in the HH group than in the non-HH group, with a median age of onset of 24.00 (0.00 ~ 96.00) and 78.00 (1.00 ~ 396.00) months (P<0.001). There are three types of laughter according to their characteristics: smiling or pleasant expressions, laughing out loud, crying or bitter laughter, with smiling or pleasant expressions being the most common (49.02%). Simple laughter is rare in all patients and is often accompanied by other manifestations such as autonomic symptoms, automatic movements, complex movements, and tonic seizures. Most of the HH group started with laughter whereas in the non-HH group laughter appeared mostly in the mid to late stages (P=0.007). Most of the HH group (57.14%) had preserved consciousness whereas most of the non-HH group (83.33%) had loss of consciousness (P=0.003). The interictal discharges in the HH group were mostly diffuse or multiregional, whereas those in the non-HH group were mostly regional (P=0.035). The onset of EEG during the seizure period in the HH group was mostly diffuse, whereas those in the non-HH group were mostly regional, mainly in the frontal and temporal regions, but there was no significant difference between the two groups (P=0.148). The non-HH group was mostly seen in those with definite lesions, and the most common type of lesion was FCD (focal cortical dysplasia, FCD). All patients enrolled in the group underwent surgical treatment, and stereoelectroencephalogram (SEEG) electrode implantation was performed in 13 cases in the HH group and in 17 cases in the non-HH group. 61.90% of the patients in the HH group had an Engel grade I, and 73.33% of the patients in the non-HH group had an Engel grade I. ConclusionsGelastic seizures has a complex neural network, with common causes other than hypothalamic hamartomas, and is most commonly seen in frontal or temporal lobe epilepsy, as well as in the insula or parietal lobe, with the most common type of lesion being FCD. The symptomatology, stage of onset, and electroencephalographic features of gelastic seizures can help in the differential diagnosis, and SEEG can help define the origin of the seizure and its diffusion pathway. The overall prognosis of surgical treatment was better in both the hypothalamic hamartomas and non-hypothalamic hamartomas groups.

    Release date:2025-05-08 09:41 Export PDF Favorites Scan
11 pages Previous 1 2 3 ... 11 Next

Format

Content