Stereo-electroencephalography (SEEG) is widely used to record the electrical activity of patients' brain in clinical. The SEEG-based epileptogenic network can better describe the origin and the spreading of seizures, which makes it an important measure to localize epileptogenic zone (EZ). SEEG data from six patients with refractory epilepsy are used in this study. Five of them are with temporal lobe epilepsy, and the other is with extratemporal lobe epilepsy. The node outflow (out-degree) and inflow (in-degree) of information are calculated in each node of epileptic network, and the overlay between selected nodes and resected nodes is analyzed. In this study, SEEG data is transformed to bipolar montage, and then the epileptic network is established by using independent effective coherence (iCoh) method. The SEEG segments at onset, middle and termination of seizures in Delta, Theta, Alpha, Beta, and Gamma rhythms are used respectively. Finally, the K-means clustering algorithm is applied on the node values of out-degree and in-degree respectively. The nodes in the cluster with high value are compared with the resected regions. The final results show that the accuracy of selected nodes in resected region in the Delta, Alpha and Beta rhythm are 0.90, 0.88 and 0.89 based on out-degree values in temporal lobe epilepsy patients respectively, while the in-degree values cannot differentiate them. In contrast, the out-degree values are higher outside the temporal lobe in the patient with extratemporal lobe epilepsy. Based on the out-degree feature in low-frequency epileptic network, this study provides a potential quantitative measure for identifying patients with temporal lobe epilepsy in clinical.
ObjectiveTo investigate characteristics of motor semiology of epileptic seizure originated from dorsolateral frontal lobe. MethodsRetrospectively analysis the clinical profiles of patients who were diagnosed dorsolateral frontal lobe epilepsy (FLE) based on stereoelectroencephalography (SEEG) and underwent respective surgeries subsequently. Component of motor semiology in a seizure can be divided into elementary motor (EM, include tonic, versive, clonic, and myoclonic seizures) and complex motor (CM, include automotor, hypermotor, and so on). A Talairach coordinate system was constructed in the sagittal series of MRI images in each case. From the cross point of VAC and the Sylvian Fissure, a line was drawn antero-superiorly, which made an angle of 60° with the AC-PC line, then the frontal lobe could be divided into anterior and posterior portion. The epileptogenic zone, which was defined as ictal onset and early spreading zone in SEEG, was classified into three types, according to the positional relationship of the responding electrodes contacts and the "60° line": the anterior, posterior, and intermediate FLE. The correlation of the components of motor semiology in seizures and the location of the epileptogenic zone was analyzed. ResultsFive cases (26.3%) were verified as anterior FLE, among which there were 2 of EM, one of CM, and 2 of EM+CM. In 7 cases (36.8%) of intermediate FLE, there were one of EM, none of CM, and 6 of EM+CM. In the rest 7 cases of posterior FLE, there were 6 of EM, none of CM, and one of EM+CM. Compared with the cases that the epileptogenic zone involved anterior portion, the posterior FLE is more likely to present EM seizures (85.7%), and less likely to show CM components (P < 0.05). And Compared with the anterior FLE and posterior FLE, the intermediate FLE is more likely to present EM+CM seizures (85.7%)(P < 0.05). ConclusionThe motor seizure semiology of dorsolateral FLE has significant correlation with the localization of the epileptogenic zone. Posterior FLE mainly present a pure elementary motor seizure, and once the epileptogenic zone involved anteriorly beyond the "60° line", the component of complex motor seizure would be seen. Intermediate FLE, as its specialty of transboundary, is more likely to show "comprised semiology" of EM and CM. Construction of the "60° line" with AC-PC coordinate system in the MRI images may play an useful role in semiology analysis in presurgical evaluation of FLE.
PurposeTo analyze the effect of medication withdraw (MW) on long-term electroencephalogram (EEG) monitoring in children who need preoperative assessment for refractory epilepsy.MethodsRetrospective analysis was performed on the data of preoperative long-term EEG monitoring of children with refractory epilepsy who needed preoperative evaluation in the Pediatric Epilepsy Center of Peking University First Hospital from August 2018 to December 2019. Monitoring duration: at least three habitual seizures were detected, or the monitoring duration were as long as 10 days. MW protocol was according to the established plan.ResultsA total of 576 children (median age 4.4 years) required presurgical ictal EEGs, and 75 (75/576, 13.0%) needed MW for ictal EEGs. Among the 75 cases, 38 were male and 37 were female. The age range was from 15 months to 17 years (median age: 7.0 years). EEG and clinical data of with 65 children who strictly obey the MW protocol were analyzed. The total monitoring duration range was from 44.1 h (about 2 days) to 241.8 h (about 10 days)(median: 118.9 h (about 5 days)). Interictal EEG features before MW were including focal interictal epileptiform discharge (IED) in 39 cases (39/65, 60%), focal and generalized IED in 2 cases (2/65, 3.1%), multifocal IED in 20 cases (20/65, 30.7%), multifocal and generalized IED in 2 cases (2/65, 3.1%), and no IED in 2 cases (2/65, 3.1%). After MW, 18 cases (18/65, 27.7%) had no change in IED and the other 47 cases had changes of IED after MW. And IEDs in 46 cases (46/65, 70.8%) were aggravated, and IED was decreased in 1 case. The pattern of aggravated IED was original IED increasement, in 41 cases (41/46, 89.1%), and 5 cases (5 /46, 10.9%) had generalized IED which was not detected before MW. Of the 46 patients with IED exacerbations, 87.3% appeared within 3 days after MW. Habitual seizures were detected in 56 cases (86.2%, 56/65) after MW, and within 3 days of MW in 80.4% cases. Eight patients (14.3%) had secondary bilateral-tonic seizure (BTCS), of which only 1 patient had no BTCS in his habitual seizures. In 56 cases, 94.6% (53/56) had seizures after MW of two kinds of AEDs.Conclusions① In this group, thirteen percent children with intractable epilepsy needed MW to obtain ictal EEG; ② Most of them (86.2%) could obtain ictal EEG by MW. The IED and ictal EEG after MW were still helpful for localization of epileptogenic zone; ③ Most of the patients can obtain ictal EEG within 3 days after MW or after MW of two kinds of AEDs;4. The new secondary generalization was extremely rare.
The brain-computer interface (BCI) based on motor imagery electroencephalography (EEG) shows great potential in neurorehabilitation due to its non-invasive nature and ease of use. However, motor imagery EEG signals have low signal-to-noise ratios and spatiotemporal resolutions, leading to low decoding recognition rates with traditional neural networks. To address this, this paper proposed a three-dimensional (3D) convolutional neural network (CNN) method that learns spatial-frequency feature maps, using Welch method to calculate the power spectrum of EEG frequency bands, converted time-series EEG into a brain topographical map with spatial-frequency information. A 3D network with one-dimensional and two-dimensional convolutional layers was designed to effectively learn these features. Comparative experiments demonstrated that the average decoding recognition rate reached 86.89%, outperforming traditional methods and validating the effectiveness of this approach in motor imagery EEG decoding.
Sleep stage scoring is a hotspot in the field of medicine and neuroscience. Visual inspection of sleep is laborious and the results may be subjective to different clinicians. Automatic sleep stage classification algorithm can be used to reduce the manual workload. However, there are still limitations when it encounters complicated and changeable clinical cases. The purpose of this paper is to develop an automatic sleep staging algorithm based on the characteristics of actual sleep data. In the proposed improved K-means clustering algorithm, points were selected as the initial centers by using a concept of density to avoid the randomness of the original K-means algorithm. Meanwhile, the cluster centers were updated according to the 'Three-Sigma Rule' during the iteration to abate the influence of the outliers. The proposed method was tested and analyzed on the overnight sleep data of the healthy persons and patients with sleep disorders after continuous positive airway pressure (CPAP) treatment. The automatic sleep stage classification results were compared with the visual inspection by qualified clinicians and the averaged accuracy reached 76%. With the analysis of morphological diversity of sleep data, it was proved that the proposed improved K-means algorithm was feasible and valid for clinical practice.
The purpose of using brain-computer interface (BCI) is to build a bridge between brain and computer for the disable persons, in order to help them to communicate with the outside world. Electroencephalography (EEG) has low signal to noise ratio (SNR), and there exist some problems in the traditional methods for the feature extraction of EEG, such as low classification accuracy, lack of spatial information and huge amounts of features. To solve these problems, we proposed a new method based on time domain, frequency domain and space domain. In this study, independent component analysis (ICA) and wavelet transform were used to extract the temporal, spectral and spatial features from the original EEG signals, and then the extracted features were classified with the method combined support vector machine (SVM) with genetic algorithm (GA). The proposed method displayed a better classification performance, and made the mean accuracy of the Graz datasets in the BCI Competitions of 2003 reach 96%. The classification results showed that the proposed method with the three domains could effectively overcome the drawbacks of the traditional methods based solely on time-frequency domain when the EEG signals were used to describe the characteristics of the brain electrical signals.
ObjectiveThe aim was to summarize the seizure and video electroencephalogram (VEEG) characteristics of Dyke-Davidoff-Masson syndrome (DDMS). Methods The case data of four patients with Dyke-Davidoff-Masson syndrome (DDMS) who attended the Epilepsy Center of Hunan Provincial Brain Hospital from March 2022 to March 2023 were retrospectively analyzed to summarize the clinical manifestations of their seizures and the characteristics of their video electroencephalogram (VEEG). Results One case of symptomatic epilepsy with focal seizures; VEEG showed poor background activity alpha rhythmic modulation, amplitude modulation, and increased distribution of slow wave activity in the left frontal and temporal regions; bilateral frontal-central and anterior-temporal regions (more so on the left side), with sharp and slow composite wave issuance.Two cases of symptomatic epilepsy with focal seizures progressing to generalized seizures; in one case, the VEEG showed: background activity α-rhythmic modulation, amplitude modulation is possible, the left frontal, central, anterior temporal region slow wave increase; the left frontal central, parietal anterior temporal region spike-like slow wave activity mixed with spike wave, spike-slow complex wave short-medium-range issuance; the other VEEG showed: background activity α-rhythmic modulation, amplitude modulation is possible, the right frontal central, anterior temporal region slow wave increase; right frontal, central, and anterior temporal region for the famous medium-extremely high-high-amplitude slow wave activity mixed with spike wave, spike-slow complex wave short-medium-range issuance. One case of symptomatic epilepsy with generalized seizures; VEEG showed bilateral occipital alpha rhythm asymmetry, right occipital region <50% of the left side, poor regulation and amplitude modulation; bilateral frontal pole, frontal region, anterior temporal region spike and spiking slow complex wave discharges (right side was prominent), and right pterionic electrodes, anterior temporal and mesial temporal spike and spiking slow wave discharges. Conclusions Epileptic seizures are one of the main clinical manifestations of DDMS and most of them are consulted after a seizure, and their seizure types tend to be focal seizures or progress to generalized seizures, and most of them are drug-refractory epilepsies. The results of VEEG monitoring tend to be characterized by abnormal background activity, increased slow-wave activity, and the site of epileptogenic wave-like discharges tends to be in line with the site of cerebral softening foci or the site of the atrophic side of the brain as shown by cranial MRI.
ObjectiveTo explore the advantages and disadvantages of using two intracranial EEG (iEEG) monitoring methods—Subdural ectrodes electroencephalography (SDEG)and Stereoelectroencephalography (SEEG), in patients with “difficult to locate” Intractable Epilepsy. MethodsRetrospectively analyzed the data of 60 patients with SDEG monitoring (49 cases) and SEEG monitoring (11 cases) from January 2010 to December 2018 in the Department of Neurosurgery of the First Affiliated Hospital of Fujian Medical. Observe and statistically compare the differences in the evaluation results of epileptic zones, surgical efficacy and related complications of the two groups of patients, and review the relevant literature. ResultsThe results showed that the two groups of SDEG and SEEG had no significant difference in the positive rate and surgical resection rate of epileptogenic zones, but the bilateral implantation rate of SEEG (5/11, 45.5%) was higher than that of SDEG (18/49, 36.7%). At present, there was no significant difference in the postoperative outcome among patients with epileptic zones resected after SDEG and SEEG monitoring (P>0.05). However, due to the limitation of the number of SEEG cases, it is not yet possible to conclude that the two effects were the same. There was a statistically significant difference in the total incidence of serious complications of bleeding or infection between the two groups (SDEG 20 cases vs. SEEG 1 case, P<0.05). There was a statistically significant difference in the total incidence of significant headache or cerebral edema between the two groups (SDEG 26 cases vs. SEEG 2 cases, P<0.05). There was a statistically significant difference in the incidence of cerebrospinal fluid leakage, subcutaneous fluid incision, and poor healing of incision after epileptic resection (SDEG 14 cases vs. SEEG 0 case, P<0.05); there were no significant differences in dysfunction of speech, muscle strength between the two groups (P>0.05). ConclusionSEEG has fewer complications than SDEG, SEEG is safer than SDEG. The two kinds of iEEG monitoring methods have advantages in the localization of epileptogenic zones and the differentiation of functional areas. The effective combination of the two methods in the future may be more conducive to the location of epileptic zones and functional areas.
ObjectiveTo study the therapeutic efficacy of stereoelectroencephalography (SEEG)-guided radiofrequency thermo-coagulation ablation (RF-TC) in the treatment of tuberous sclerosis (TSC) related epilepsy and to investigate the prediction of the therapeutic response to SEEG-guided RF-TC for the efficacy of the subsequent surgical treatment. MethodsWe retrospectively analyze TSC patients who underwent SEEG phase II evaluation from January 2014 to January 2023, and to select patients who underwent RF-TC after completion of SEEG monitoring, study the seizure control of patients after RF-TC, and classify patients into effective and ineffective groups for RF-TC treatment according to the results of RF-TC treatment, compare the surgical outcomes of patients in the two groups after SEEG, to explore the prediction of surgical outcome by RF-TC treatment. Results59 patients with TSC were enrolled, 53 patients (89.83%) were genetic detection, of which 28 (52.83%) were TSC1-positive, 21 (39.62%) were TSC2-positive, and 4 (7.54%) were negative, with 33 (67.34%) de novo mutations. The side of the SEEG electrode placement: left hemisphere in 9 cases, right hemisphere in 13 cases, and bilateral hemisphere in 37 cases. 37 patients (62.71%) were seizure-free at 3 months, 31 patients (52.54%) were seizure-free at 6 months, 29 patients (49.15%) were seizure-free at 12 months, and 20 patients (39.21%) were seizure-free at 24 months or more. 11 patients had a seizure reduction of more than 75% after RF-TC, and the remaining 11 patients showed no significant change after RF-TC. There were 48 patients (81.35%) in the effective group and 11 patients (18.65%) in the ineffective group. In the effective group, 22 patients were performed focal tuber resection laser ablation, 19 cases were seizure-free (86.36%). In the ineffective group, 10 patients were performed focal tuber resection laser ablation, only 5 cases were seizure-free (50%), which was a significant difference between the two groups (P<0.05). ConclusionsOur data suggest that SEEG guided RF-TC is a safe and effective both diagnostic and therapeutic treatment for TSC-related epilepsy, and can assist in guiding the development of future resective surgical strategies and determining prognosis.
ObjectiveTo investigate the application of stereoelectroencephalography (SEEG) in the refractory epilepsy related to periventricular nodular heterotopia (PNH). MethodsTen patients with drug-resistant epilepsy related to PNHs from Guangdong Sanjiu Brain Hospital and the First Affiliated Hospital of Jinan University from April 2017 to February 2021 were studied. Electrodes were implanted based on non-invasive preoperative evaluation. Then long-term monitoring of SEEG was carried out. The patterns of epileptogenic zone (EZ) were divided into four categories based on the ictal SEEG: A. only the nodules started; B. nodules and cortex synchronous initiation; C. the cortex initiation with early spreading to nodules; D. only cortex initiation. All patients underwent SEEG-guided radiofrequency thermocoagulation (RFTC), with a follow-up of at least 12 months. ResultsAll cases were multiple nodules. Four cases were unilateral and six bilateral. Eight cases were distributed in posterior pattern, and one in anterior pattern and one in diffused pattern, respectively. Seven patients had only PNH (pure PNH) and three patients were associated with other overlying cortex malformations (PNH plus). The EZ patterns of all cases were confirmed by the ictal SEEG: six patients were in pure type A, two patients were in pure type B, one patient in type A+B and one in type A+B+C, respectively. In eight patients SEEG-guided RF-TC was targeted only to PNHs; and in two patients RFTC was directed to both heterotopias and related cortical regions. The mean follow up was (33.4±14.0) months (12 ~ 58 months). Eight patients (in pure type A or type A included) were seizure free. Two patients were effective. None of the patients had significant postoperative complications or sequelae. ConclusionThe epileptic network of Epilepsy associated with nodular heterotopia may be individualized. Not all nodules are always epileptogenic, the role of each nodule in the epileptic network may be different. And multiple epileptic patterns may occur simultaneously in the same patient. SEEG can provide individualized diagnosis and treatment, be helpful to prognosis.