Inferior myocardial infarction is an acute ischemic heart disease with high mortality, which is easy to induce life-threatening complications such as arrhythmia, heart failure and cardiogenic shock. Therefore, it is of great clinical value to carry out accurate and efficient early diagnosis of inferior myocardial infarction. Electrocardiogram is the most sensitive means for early diagnosis of inferior myocardial infarction. This paper proposes a method for detecting inferior myocardial infarction based on densely connected convolutional neural network. The method uses the original electrocardiogram (ECG) signals of serially connected Ⅱ, Ⅲ and aVF leads as the input of the model and extracts the robust features of the ECG signals by using the scale invariance of the convolutional layers. The characteristic transmission of ECG signals is enhanced by the dense connectivity between different layers, so that the network can automatically learn the effective features with strong robustness and high recognition, so as to achieve accurate detection of inferior myocardial infarction. The Physikalisch Technische Bundesanstalt diagnosis public ECG database was used for verification. The accuracy, sensitivity and specificity of the model reached 99.95%, 100% and 99.90%, respectively. The accuracy, sensitivity and specificity of the model are also over 99% even though the noise exists. Based on the results of this study, it is expected that the method can be introduced in the clinical environment to help doctors quickly diagnose inferior myocardial infarction in the future.
Automated characterization of different vessel wall tissues including atherosclerotic plaques, branchings and stents from intravascular ultrasound (IVUS) gray-scale images was addressed. The texture features of each frame were firstly detected with local binary pattern (LBP), Haar-like and Gabor filter in the present study. Then, a Gentle Adaboost classifier was designed to classify tissue features. The methods were validated with clinically acquired image data. The manual characterization results obtained by experienced physicians were adopted as the golden standard to evaluate the accuracy. Results indicated that the recognition accuracy of lipidic plaques reached 94.54%, while classification precision of fibrous and calcified plaques reached 93.08%. High recognition accuracy can be reached up to branchings 93.20% and stents 93.50%, respectively.
Electroencephalography (EEG) signals are strongly correlated with human emotions. The importance of nodes in the emotional brain network provides an effective means to analyze the emotional brain mechanism. In this paper, a new ranking method of node importance, weighted K-order propagation number method, was used to design and implement a classification algorithm for emotional brain networks. Firstly, based on DEAP emotional EEG data, a cross-sample entropy brain network was constructed, and the importance of nodes in positive and negative emotional brain networks was sorted to obtain the feature matrix under multi-threshold scales. Secondly, feature extraction and support vector machine (SVM) were used to classify emotion. The classification accuracy was 83.6%. The results show that it is effective to use the weighted K-order propagation number method to extract the importance characteristics of brain network nodes for emotion classification, which provides a new means for feature extraction and analysis of complex networks.
The brain computer interface (BCI) can be used to control external devices directly through electroencephalogram (EEG) information. A multi-linear principal component analysis (MPCA) framework was used for the limitations of tensor form of multichannel EEG signals processing based on traditional principal component analysis (PCA) and two-dimensional principal component analysis (2DPCA). Based on MPCA, we used the projection of tensor-matrix to achieve the goal of dimensionality reduction and features exaction. Then we used the Fisher linear classifier to classify the features. Furthermore, we used this novel method on the BCI competitionⅡdataset 4 and BCI competitionⅣdataset 3 in the experiment. The second-order tensor representation of time-space EEG data and the third-order tensor representation of time-space-frequency EEG data were used. The best results that were superior to those from other dimensionality reduction methods were obtained by much debugging on parameter P and testQ. For two-order tensor, the highest accuracy rates could be achieved as 81.0% and 40.1%, and for three-order tensor, the highest accuracy rates were 76.0% and 43.5%, respectively.
Image feature extraction is an important part of image processing and it is an important field of research and application of image processing technology. Uygur medicine is one of Chinese traditional medicine and researchers pay more attention to it. But large amounts of Uygur medicine data have not been fully utilized. In this study, we extracted the image color histogram feature of herbal and zooid medicine of Xinjiang Uygur. First, we did preprocessing, including image color enhancement, size normalizition and color space transformation. Then we extracted color histogram feature and analyzed them with statistical method. And finally, we evaluated the classification ability of features by Bayes discriminant analysis. Experimental results showed that high accuracy for Uygur medicine image classification was obtained by using color histogram feature. This study would have a certain help for the content-based medical image retrieval for Xinjiang Uygur medicine.
In order to solve the problem of early classification of Alzheimer’s disease (AD), the conventional linear feature extraction algorithm is difficult to extract the most discriminative information from the high-dimensional features to effectively classify unlabeled samples. Therefore, in order to reduce the redundant features and improve the recognition accuracy, this paper used the supervised locally linear embedding (SLLE) algorithm to transform multivariate data of regional brain volume and cortical thickness to a locally linear space with fewer dimensions. The 412 individuals were collected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) including stable mild cognitive impairment (sMCI, n = 93), amnestic mild cognitive impairment (aMCI, n = 96), AD (n = 86) and cognitive normal controls (CN, n = 137). The SLLE algorithm used in this paper is to calculate the nearest neighbors of each sample point by adding the distance correction term, and the locally linear reconstruction weight matrix was obtained from its nearest neighbors, then the low dimensional mapping of the high dimensional data can be calculated. In order to verify the validity of SLLE in the task of classification, the feature extraction algorithms such as principal component analysis (PCA), Neighborhood MinMax Projection (NMMP), locally linear mapping (LLE) and SLLE were respectively combined with support vector machines (SVM) classifier to obtain the accuracy of classification of CN and sMCI, CN and aMCI, CN and AD, sMCI and aMCI, sMCI and AD, and aMCI and AD, respectively. Experimental results showed that our method had improvements (accuracy/sensitivity/specificity: 65.16%/63.33%/67.62%) on the classification of sMCI and aMCI by comparing with the combination algorithm of LLE and SVM (accuracy/sensitivity/specificity: 64.08%/66.14%/62.77%) and SVM (accuracy/sensitivity/specificity: 57.25%/56.28%/58.08%). In detail the accuracy of the combination algorithm of SLLE and SVM is 1.08% higher than the combination algorithm of LLE and SVM, and 7.91% higher than SVM. Thus, the combination of SLLE and SVM is more effective in the early diagnosis of Alzheimer’s disease.
Due to the sparsity of brain encoding, the neural ensemble signals recorded by microelectrode arrays contain a lot of noise and redundant information, which could reduce the stability and precision of decoding of motion intent. To solve this problem, we proposed a decoding method based on partial least squares (PLS) feature extraction in our study. Firstly, we extracted the features of spike signals using the PLS, and then classified them with support vector machine (SVM) classifier, and decoded them for motion intent. In this study, we decoded neural ensemble signals based on plus-maze test. The results have shown that the proposed method had a better stability and higher decoding accuracy, due to the PLS combined with classification model which overcame the shortcoming of PLS regression that was easily affected by accumulated effect of noise. Meanwhile, the PLS method extracted fewer features with more useful information in comparison with common feature extraction method. The decoding accuracy of real data sets were 93.59%, 84.00% and 83.59%, respectively.
Brain-computer interface (BCI) provides a direct communicating and controlling approach between the brain and surrounding environment, which attracts a wide range of interest in the fields of brain science and artificial intelligence. It is a core to decode the electroencephalogram (EEG) feature in the BCI system. The decoding efficiency highly depends on the feature extraction and feature classification algorithms. In this paper, we first introduce the commonly-used EEG features in the BCI system. Then we introduce the basic classical algorithms and their advanced versions used in the BCI system. Finally, we present some new BCI algorithms proposed in recent years. We hope this paper can spark fresh thinking for the research and development of high-performance BCI system.
Existing arrhythmia classification methods usually use manual selection of electrocardiogram (ECG) signal features, so that the feature selection is subjective, and the feature extraction is complex, leaving the classification accuracy usually affected. Based on this situation, a new method of arrhythmia automatic classification based on discriminative deep belief networks (DDBNs) is proposed. The morphological features of heart beat signals are automatically extracted from the constructed generative restricted Boltzmann machine (GRBM), then the discriminative restricted Boltzmann machine (DRBM) with feature learning and classification ability is introduced, and arrhythmia classification is performed according to the extracted morphological features and RR interval features. In order to further improve the classification performance of DDBNs, DDBNs are converted to deep neural network (DNN) using the Softmax regression layer for supervised classification in this paper, and the network is fine-tuned by backpropagation. Finally, the Massachusetts Institute of Technology and Beth Israel Hospital Arrhythmia Database (MIT-BIH AR) is used for experimental verification. For training sets and test sets with consistent data sources, the overall classification accuracy of the method is up to 99.84% ± 0.04%. For training sets and test sets with inconsistent data sources, a small number of training sets are extended by the active learning (AL) method, and the overall classification accuracy of the method is up to 99.31% ± 0.23%. The experimental results show the effectiveness of the method in arrhythmia automatic feature extraction and classification. It provides a new solution for the automatic extraction of ECG signal features and classification for deep learning.
The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.