Objective To explore the in vitro osteogenesis of the chitosan-gelatin scaffold compounded with recombinant human bone morphogenetic protein 2 (rhBMP-2). Methods Recombinant human BMP-2 was compounded with chitosan-gelatin scaffolds by freezedrying. 2T3 mouse osteoblasts and C2C12 mouse myoblasts were cultured and seeded onto the complexes at thedensity of 2×104/ml respectively. The complexes were divided into two groups. Group A: 2T3 osteoblasts seeded, consisted of 14 rhBMP-2 modified complexes. Each time three scaffolds were taken on the 3rd, 7th, 14th, and 21st day of the culturing, then the expression of osteocalcin gene (as the marker of bone formation) in adherent cells was detected by semiquantitative RT-PCR with housekeeping gene β-tubulin as internalstandard. The other 2 rhBMP-2 modified complexes were stopped being cultured on 14th day after cell seeding, and the calcification of the complexes was detected by Alizarian Red S staining. Five scaffolds without rhBMP-2 modification as the control group A, they were stopped being cultured on 14th day after cell seeding. Of the 5 scaffolds, 3 were subjected tothe detection of osteocalcin gene expression and 2 were subjected to the detection of calcification. Group B: C2C12 myoblasts seeded, had equal composition andwas treated with the same as group A. Besides these 2 groups, another 2 rhBMP2 modified complexes with 2T3 osteoblasts seeding were cultured for 3 days and then scanned by electron microscope (SEM) as to detect the compatibility of the cell to the complex. ResultsSEM showed that cells attached closely to the complex and grew well. In group A, the expression level(1.28±0.17)of osteocalcin gene in cells on rhBMP-2 modified complexes was higher than that (0.56±0.09) of the control group A, being statistically -significantly different(P<0.05) control. C2C12 myoblasts which did not express osteocalcin normally could also express osteocalcin after being stimulated by rhBMP-2 for at least 7 days. Alizarian Red S staining showed that there was more calcification on rhBMP-2 modified complexes in both groups. There were more calcification in the group compounded with rhBMP-2, when the groups were seeded with the same cells. Conclusion The complexmade of rhBMP-2 and chitosan-gelatin scaffolds has b osteogenesis ability in vitro.
Objective To investigate the effect of “two-phase” tissue engineered cartilage constructed by autologous marrow mesenchymal stem cells(MSCs) and allogeneic bone matrix gelatin(BMG) in repairing articular cartilage defects. Methods Thirty-twoNew Zealand white rabbits were involved in the experiment. “Two-phase” allogeneic BMG scaffold (one side of porous cancellous bone and the other side of cortical bone; 3 mm both in diameter and in thickness) was prepared from iliac bone and limb bone of 5 rabbits by sequentially chemical method. The MSCs wereseparated from 18 New Zealand white rabbits and induced to express chondrocyticphenotype. The chondrocyte precursor cells were seeded onto “two-phase” allogeneic BMG to construct tissue engineering cartilage. Masson’s trichrome staining, PAS staining and scanning electronic microscopic observation were carried out at 1, 3 and 5 weeks. The defects of full thickness articular cartilage(3 mm both in diameter and in depth) were made at both sides of femoral medial condyles in 27 rabbits(including 18 of separated MSCs and the remaining 9). The defects were repaired with the tissue engineered cartilage at the right side (group A, n=18), with BMG at the left side(group B, n=18), and without any implant at both sides in the remaining 9 rabbits as a control( group C, n=18). After 1, 3 and6 months, the 6 specimens of femoral condyles were harvested in 3 groups, respectively. Gross observation, Masson’s trichrome and Alcian blue staining, modified Wakitani scoring and in situ hybridization of collagen type Ⅱ were carried out to assess the repair efficacy of tissue engineered cartilage. Results The “two-phase” BMG consisted of the dense cortical part and the loose cancellous part. In cancellous part, the pore size ranged 100-800 μm, in which the chondrocyte precursor cells being induced from MSCs proliferated and formed the cell-rich cartilaginous part of tissue engineered cartilage. In cortical part, the pore size ranged 10-40 μm, on which the cells arranged in a layer and formed the hard part of subchondral bone. After 1 month of transplantation, the cartilage and subchondral bone were regenerated in group A; during observation, the regenerated cartilage graduallythinned, but defect was repaired and the structure of the articular surface ansubchondral bone was in integrity. In groups B and C, defects were not repaired, the surrounding cartilage of defect was abrased. According to the modified Wakitani scoring, the indexes in group A were significantly higher than those in group B and C(Plt;0.01) except the thickness of cartilage at 6 months. The positive cell rate of in situ hybridization for collagen type Ⅱ in group A was also higher than those in groups B and C(Plt;0.01). Conclusion “Two-phase” allogeneic BMG is a prospective scaffold for tissue engineered cartilage,which combines with autologous chondrocyte precursor cells induced from MSCs toconstruct the tissue engineering cartilage. The tissue engineered cartilage can repair defects of articular cartilage and subchondral bone.
Objective To investigate the behavior of rat calvarial osteoblasts cultured on chitosan-gelatin/hydroxyapatite (CSGel/HA) composite scaffolds. Methods The rat calvarial osteoblasts (the 3rd passage) were seeded at a density of 1.01×106 cells/ml onto the CS-Gel/HA composite scaffolds having porosity 85.20%, 90.40% and 95.80%. Cell number was counted after cultured for 3 days,1 week, 2 weeks and 3 weeks. Cell proliferation, bone-like tissue formation, and mineralization were separately detected by HE, von Kossa histological stainingtechniques. Results The CS-Gel/HA composite scaffolds supported the attachmentof seeded rat calvarial osteoblasts. Cells proliferated faster in scaffold withhigher porosity 90.40% and 95.80% than scaffold with lower porosity 85.20%. The osteoblasts/scaffold constructs were feasible for mineral deposition, and bonelike tissue formation in 3 weeks. Conclusion This study suggests the feasibility of using CS-Gel/HA composite scaffolds for bone tissue engineering.
Objective To introduce an injectable andin situ gelling gelatin hydrogel, and to explore the possibility as a carrier for demineralized bone matrix (DBM) powder delivery. Methods First, thiolated gelatin was prepared and the thiol content was determined by Ellman method, and then the injectable andin situ gelling gelatin hydrogel (Gel) was formed by crosslinking of the thiolated gelatin and poly (ethylene oxide) diacrylate and the gelation time was determined by inverted method. Finally, the DBM-Gel composite was prepared by mixing Gel and DBM powder. The cytotoxicity was tested by live/dead staining and Alamar blue assay of the encapsulated cells in the DBM-Gel. Forin vitro cell induction, C2C12 cells were firstly incubated onto the surface of the DBM and then the composite was prepared. The experiment included two groups: DBM-Gel and DBM. The alkaline phosphatase (ALP) activity was determined at 1, 3, 5,and 7 days after culture.In vivo osteoinductivity was evaluated using ectopic bone formation model of nude rats. Histological observation and the ALP activity was measured in DBM-Gel and DBM groups at 4 weeks after implantation. Results The thiol content in the thiolated gelatin was (0.51±0.03) mmol/g determined by Ellman method. The gelation time of the hydrogel was (6±1) minutes. DBM powder can be mixed with the hydrogel and injected into the implantation site within the gelation time. The cells in the DBM-Gel exhibited spreading morphology and connected each other in part with increasing culture time. The viability of the cells was 95.4%±1.9%, 97.3%±1.3%, and 96.1%±1.6% at 1, 3, and 7 days after culture, respectively. The relative proliferation was 1.0±0.0, 1.1±0.1, 1.5±0.1, and 1.6±0.1 at 1, 3, 5, and 7 days after culture respectively.In vitro induction showed that the ALP activity of the DBM-Gel group was similar to that of the DBM group, showing no significant difference (P>0.05). With increasing culture time, the ALP activities in both groups increased gradually and the activity at 5 and 7 days was significantly higher than that at 1 and 3 days (P<0.05), while there was no significant difference between at 1 and 3 days, and between 5 and 7 days (P>0.05). At 4 weeks after implantationin vivo, new bone and cartilage were observed, but no bone marrow formation in DBM-Gel group; in DBM group, new bone, new cartilage, and bone marrow formation were observed. The histological osteoinduction scores of DBM-Gel and DBM groups were 4.0 and 4.5, respectively. The ALP activities of DBM-Gel and DBM groups were respectively (119.4±22.7) and (146.7±13.0) μmol/mg protein/min, showing no significant difference (t=–2.085,P=0.082). Conclusion The injectable andin situ gelling gelatin hydrogel for delivery of DBM is feasible.
Objective To evaluate the biomechanicalproperties and structuralcharacteristics of various composites of partially decalcified allogenic bone matrix gelatin and bone cement at different ratios. Methods According to Urist method, partially decalcified allogenic bone matrix gelatin was prepared and mixedwith bone cement at different ratios of 0, 400, 500, and 600mg/g. Then the comparisons of these composites were performed in microstructure, ultimate compression strength and ultimate bending strength properties. Results The electronic microscope showed that the bone particles and bone cement were distributed evenly in the composite, irregularly connecting by multiple points; with the increase ofbone particles and decrease of bone cement in the composite, there were more and more natural crevices, varying from 100 μm to 400 μm in width, in the biomaterials. Of all the composites with the ratios of 0, 400,500, and 600 mg/g, the measurements of ultimate compression strength were (71.7±2.0) MPa, (46.9±3.3) MPa, (39.8±4.1) MPa, and (32.2±3.4) MPa, respectively; and the measurements ofultimate bending strength were (65.0±3.4) MPa, (38.2±4.0) MPa, (33.1±4.3) MPa and (25.3±4.6) MPa, respectively. Conclusion The compositeof partially decalcified allogenic bone matrix gelatin and bone cement has a good biomechanical property and could be easily fabricated and re-shaped, which make it available to be used clinically as an idea bone graft biomaterial.
ObjectiveTo explore the correlation of serum neutrophil gelatinase-associated lipocalin (sNGAL) with inflammatory response in patients with community-acquired pneumonia (CAP) and assess the diagnostic value of sNGAL for severe CAP (SCAP).MethodsFrom January 2018 to June 2019, a total of 85 patients with CAP were enrolled in this study. Age, length of hospital stay, the levels of serum creatinine, blood urea nitrogen, white blood cell count,C-reactive protein (CRP), interleukin-6 (IL-6), and procalcitonin, and CURB-65 score were compared between patients with SCAP (n=34) and patients without SCAP (n=51). The correlations of sNGAL with serum creatinine, blood urea nitrogen, white blood cell count, CRP, IL-6, procalcitonin, and CURB-65 score were assessed with Spearman’s correlation analysis. The area under the receiver operating characteristic (ROC) curve for sNGAL diagnosing SCAP was examined. ResultsCompared with patients without SCAP, SCAP patients demonstrated older age, longer hospital stay, higher serum CRP and IL-6 concentritions, and higher CURB-65 score (P<0.05). The Spearman’s correlation test showed that sNGAL was positively correlated with serum CRP, IL-6, PCT and CURB-65 score (rs=0.472, 0.504, 0.388, and 0.405, respectively; P<0.01). According to ROC analysis, the area under curve of sNGAL for diagnosing SCAP were 0.816, with a sensitivity of 76.56% and a specificity of 74.4% when the cut-off value was 171.0 ng/mL.ConclusionssNGAL concentration is positively correlated with the serverity of CAP. It can be regarded as a reliable indicator for diagnosis of SCAP in patients with CAP.
OBJECTIVE To study the function of the composite of bone matrix gelatin(BMG) and plaster in the repairing process of bone defects. METHODS Sixteen New Zealand rabbits which were defected in corpus radii were made as implant zone of bone. Sixteen sides of radii were implanted with the composite of BMG and plaster as experimental group. Others were implanted with BMG(8 sides) and bone stored in alcohol(8 sides) as control groups. The repairing process in bone defects were observed by X-ray and histological examination. RESULTS There was an obvious osteogenesis in experimental group. The defects of radii were almost healed at 12th week after operation. There were osteogenesis in both control groups, but the repairing process was slower than that of the experimental group. CONCLUSION The composite of BMG and plaster is a good material for bone transplantation.
OBJECTIVE To testify the inductive osteogenesis of allogeneic bone matrix gelatin (BMG) in promoting intervertebral fusion. METHODS The gelatin sponge, allogeneic BMG, decalcified bone matrix (DBM) and alcohol conserved bone were implanted respectively into the intervertebral space of rabbit, whose intervertebral discs were removed before implantation. The intervertebral spaces were evaluated by X-ray and histological examination at 4, 8, and 12 weeks after operation. RESULTS No obvious immune rejection was observed. Amounts of new bone were formed in the intervertebral spaces at 4 and 8 weeks. And complete infusion of the intervertebral spaces were appeared at 12 weeks. CONCLUSION Allogeneic BMG can promote bone fusion of intervertebral spaces through osteoinduction, which suggests that allogeneic BMP is an ideal substitute for bone replacement.
Although the recent studies have concerned the pathogenesis and therapeutic strategies of acute kidney injury (AKI), the mortality of AKI is still terribly high, and it is still one of the most important death factors in the intensive care unit. There is no doubt that early verdict of AKI, is good for a more aggressive treatment and can promise an improved prognosis for AKI patients. Serum creatinine level, serving as the gold standard for diagnosis of kidney injury, cannot meet current clinical work in its sensitivity and specificity of diagnosis of early AKI. Over the past decades, researchers worked to find and verify novel AKI biomarkers, including neutrophil gelatinase associated lipocalin, interleukin-18, kidney injury molecule-1 and cystatin-C, which were proved to be the potential reliable predictor of AKI development and prognosis, and were of great importance to the early diagnosis and clinical monitoring of AKI. This paper reviews the main studies on these novel prognostic predictors of AKI over the decades and evaluates their roles and limitations in early diagnosis and clinical prognosis prediction.
OBJECTIVE: To prepare chitosan-gelatin/hydroxyapatite (CS-Gel/HA) composite scaffolds, and to investigate the influence of components and preparing conditions to their micromorphology. METHODS: The CS-Gel/HA composite scaffolds were prepared by phase-separation method. Micromorphology and porosity were detected by using scanning electron microscope and liquid displacement method respectively. RESULTS: Porous CS-Gel/HA composite scaffolds could be prepared by phase-separation method, and their density and porosity could be controlled by adjusting components and quenching temperature. CONCLUSION: The study suggests the feasibility of using CS-Gel/HA composite scaffolds for the transplantation of autogenous osteoblasts to regenerate bone tissue.