Epigenetic modifications such as DNA methylation, histone post-translational modifications, non-coding RNA are reversible, heritable alterations which are induced by environmental stimuli. Major risk factors of diabetes and diabetic complications including hyperglycemia, oxidative stress and advanced glycation end products, can lead to abnormal epigenetic modifications in retinal vascular endothelial cells and retinal pigment epithelium cells. Epigenetic mechanisms are involved in the pathogenesis of macular edema and neovascularization of diabetic retinopathy (DR), as well as diabetic metabolic memory. The heritable nature of epigenetic marks also playsakey role in familial diabetes mellitus. Further elucidation of epigenetic mechanisms in DR can open the way for the discovery of novel therapeutic targets to prevent DR progression.
OBJECTIVE: To study the effect of simvastatin on the expression of bone morphogenetic protein-2 (BMP-2) and alkaline phosphates (ALP) activity in the primary cultured bone marrow stromal cells, and to elucidate the mechanism of the anabolic osteogenetic effect of simvastatin. METHODS: Bone marrow stromal cells in femur and tibia of adult mouse were cultured in vitro. after treated with different concentrations of simvastatin (0, 0.1, 0.2, 0.5 and 1.0 mumol/L) or recombinant human BMP-2 for 72 hours, ALP activity of bone marrow stromal cells was determined. BMP-2 expression of bone marrow stromal cells was analyzed by using immunocytochemistry and Western blotting. RESULTS: After treated with simvastatin for 72 hours, BMP-2 expression increased, while little BMP-2 expression could be observed in the control group. ALP activity also increased in a dose-dependent manner; t-test showed that ALP activity in the group which concentrations of simvastatin were 0.5 mumol/L (t = 2.35, P = 0.041), 1.0 mumol/L (t = 2.348, P = 0.041) had significant difference when compared with control group. CONCLUSION: Simvastatin lead to high expression of BMP-2 in bone marrow stromal cells, via the increased auto- or para-crine of BMP-2, and ALP activity increased. These may be parts of the mechanism on the anabolic osteogenetic effect of simvastatin.
Objective To observe effects of the direct impaction onthe cell survival and the bone formation of the tissue engineered bone modified by the adenovirus mediated human bone morphogenetic protein 2 (Adv-hBMP2) gene and to verify the feasibility of the impacted grafting with it. Methods The marrow stromal cells (MSCs) were separated from the canine bone marrow and were cultured. MSCs were transfected with the Adv-hBMP2 gene and combined with the freeze-dried cancellous bone (FDB) to form the tissue engineered bone. Four days after the combination, the tissue engineered bone was impacted in a simulated impactor in vitro and implanted in the mouse. The cell survivals were evaluated with SEM 1 and 4 days after the combination, immediately after the impaction, and 1 and 4 days after the impaction, respectively. The bone formation and the allograft absorption were histologically evaluated respectively. Results There were multiple layers of the cells and much collagen on FDB before the impaction. Immediately after the impaction, most of the cells on the direct contact area disappearedand there was much debris on the section. Some of the cells died and separatedfrom the surface of FDB at 1 day, the number of the cells decreased but the collagen increased on the surface at 4 days. Histologically, only the fibrous tissue was found in FDB without the cells, the bone formation on FDB was even in distribution and mass in appearance before the impaction, but declined and was mainly on the periphery after the impaction in the AdvhBMP2 modified tissue-engineered bone. Conclusion The simulated impaction can decrease the cells survival and the bone formation of the AdvhBMP-2 modified tissue-engineered bone. The survival cells still function well.It is feasible to use the tissue engineered bone in the impaction graft.
OBJECTIVE To investigate the ectopic osteogenesis of bone marrow stromal cells (MSC) induced by bone morphogenetic protein(BMP) in vitro and in vivo, providing the experimental evidence for making an artificial bone with its own capacity of bone formation. METHODS MSC were separated and cultured from bone marrow of Wistar rats, MSC were co-cultured with BMP in vitro (cultured in plate and diffuse chamber). Artificial coral hydroxyapatites (CHA) with MSC and BMP were implanted into dorsal muscles of Wistar rats, their bone formation were observed by morphological examination, histochemistry and immunohistochemistry. RESULTS Only cartilaginous matrix were produced by MSC in vitro (cultured in plate and diffuse chamber), and both cartilaginous and bone matrix production within the combined grafts were seen. The bone formation of experimental groups (CHA + BMP + MSC) was ber than that of control A(CHA + MSC) and control B(CHA). CONCLUSION It may be possible to produce an artificial bone with its own capacity of bone formation by combined graft (CHA + BMP + MSC). There may be multiple factors as well as BMP inducing bone formation both in the whole body and the location of the implantation. Further research on these factors will have the significance for making the ideal artificial bone.
Objective To observe the mutation frequency and the characteristics of rentinitis pigmentosa (RP)1 gene in the Chinese patients with autosomal dominant (AD) RP or sporadic RP (SRP), and to evaluate their potential effects on the pathogenesis of RP. Methods Fifty-five members from 7 Chinese families with ADRP, 30 patients with SRP, and 75 healthy adults were recruited. Polymerase chain reaction (PCR) and direct DNA sequencing were used to detect the sequence mutation in the entire coding region and splice sites of RP1 gene. Univariate analysis and multivariate analysis were used to detect the effect of RP1 gene mutation sites on RP. Results Four coding sequence variants were detected in the codes of 852,872,921 and 939 at the exon 4 of RP1 gene. The R872H alteration, which was found in both ADRP families and patients with SRP, showed positive correlation with RP confirmed by the multivariate logistic regression analysis. The P903L alteration was only found in ADRP families but not in the patients with SRP or the healthy adults. Conclusions The R872H alteration in the RP1 gene is likely to increase the risk of RP, and may be a susceptible gene of RP. Whether the P903L alteration is a diseasecausing factor needs to be further studied.
Objective To investigate the effect of dexamethasone, recombinant human fibroblast growth factor (rhFGF) and recombinant human bone morphogenetic protein 2 (rhBMP-2) on the proliferation and differentiation of marrow stromal stem cells (MSCs) for their further application in tissue engineering. Methods MSCs were isolated and cultured in vitro, and then exposed to different dose of dexamethasone (10-8 mol/L,10-7 mol/L,10 -6 mol/L), rhFGF (50 ng/ml,200 ng/ml,500 ng/ml) and rhBMP-2 (50 ng/ml,500 ng/ml,1 000 ng/ml) respectively. The total protein and alkaline phosphatase (ALP) activity of each group was measured on 4th and 7th day. Results Exposure of MSCs with 10-6mol/L dexamethasone inhibited protein synthesis without obvious effects on ALP expression. The application of rhFGF significantly promoted cell proliferation but inhibited ALP activity. In comparison, ALP expression was significantly enhanced by treatment of rhBMP-2 at concentration of 500 ng/ml,1 000 ng/ml. Conclusion The exposure of dexamethasone as well as rhBMP-2 to MSCs with an appropriate concentration promotes osteogenic expression without reverse effects on cell proliferation, which indicates the great potential value in cell-based strategy of bone tissue engineering.
Objective To construct the recombined DNA pcDNA3.1-hBMP-2 and transfect into human marrow stromal stem cells (MSCs) in vitro, and to explore theeffects of transfection on cellular proliferation and expression of vascular endothelial growth factor (VEGF). Methods The expression of human bone morphogenetic protein 2(hBMP-2) in these cells after transfection was determined by in situ hybridization and immunohistochemical analysis and Western blot analysis. The changes of cell proliferation were observed by flow cytometry. The effects of BMP-2 gene transfection on expression of VEGF in the cells were analyzed by in situ hybridization of VEGF cDNA probe. Results Stable expressionof hBMP-2 in pcDNA3.1-hBMP-2 transfected MSCs was confirmed in the levels of mRNA and protein.Cellular proportion in S period increased, which indicated that the synthesis of cell DNA increased. The expression of VEGF in the cells increased obviously. Conclusion With the help of lipofectamine, the pcDNA3.1-hBMP-2 were transfected into human MSCs successfully. hBMP-2 plays an important role in promoting cellular proliferation and vascular generation during bone repair.
Objective To study the effect of combined use of autologous micromorselized bone with bone morphogenetic protein(BMP) and type Ⅰ collagen graft on the treatment of segmental bone defects. Methods The bulk bone of rabbit iliac crest was ground into micromorselized bone, which was combined with BMP and type Ⅰ collagen. The model of 1.5 cm bone defect was established in the middle shaft of the radius. Fifty-six rabbits were assigned to four repairing methods: autologous micromorselized bone graft with BMP and type Ⅰ collagen, autologous micromorselized bone graft with type Ⅰ collagen, autologous micromorselized bone graft alone, and control group. The defect-repairing capability of each group was assessed by radiographic, histological, bone densitometry and biomechanical studies. Results X-ray manifested that at the end of 8 weeks after operation, the bone defect treated with autologous micromorselized bone graft with BMP and type Ⅰ collagen was repaired completely,and at the end of 12 weeks after operation the bone defect treated with autologous micromorselized bone and type Ⅰ collagen was cured completely, but the bonedefect treated with autologous micromorselized alone was completely repaired. No healing was found in the control group. In the bone densitometry detection, the material with BMP exhibited the best defectrepairing capability in terms of amount increased and quality of the new bone at the end of 8 weeksand 12 weeks. The group with BMP has the best mechanical strength of all groupsat the end of 12 weeks. Conclusion Autologous micromorselized bone graft with BMP/type Ⅰ collagen and autologous micromorselized bone graft with type Ⅰ collagen prove to be effective in repairing segmental bone defects. The autologousmicromorselized bone combined BMP and typeⅠcollagen is an excellent bone repairing material considering the satisfactory osteogenesis, osteoconduction, and osteoinduction seen in this method.
Objective To investigate a new grafting material of bone xenograft with b bone inductive and conductive capacity. Methods Based on successful clinical application of the reconstituted bone xenograft (RBX), a new xenograft was made by combining recombinant human bone morphogenetic protein-2 (rhBMP-2) with antigen-free bovine cancellous bone (BCB). Sixty male BALB/C mice aged 4 weeks were divided into study group of 30 and control group of 30 randomly. rhBMP-2 / BCB was implanted in the left thigh muscle pouch in the study group andBCB in the control group. The mice were sacrificed at 7 d, 14d and 21d after implantation. Inductivity of rhBMP-2/BCB was detected by histological observation and biochemical determination of the samples. Results Histological examinationshowed that rhBMP-2/BCB induced chondrogenesis on the 7th day, with woven boneformed on the 14th day, and lamellar bone and marrow on the 21st day, while BCBfailed to induce chondrogenesis or osteogenesis on the 7th, 14th and 21st days. The alkaline phosphatase activities and calcium content in study group were higher than those in control group with significant difference (P<0.01). Conclusion rhBMP-2/BCB is an ideal grafting material with b bone inductive and conductive capacity without evoking immune reaction.
Objective To investigate bone regeneration of the cell-biomaterial complex using strategies of tissue engineering based on cells.Methods Hydroxyapatite/collagen (HAC) sandwich composite was produced to mimic the natural extracellular matrix of bone, with type Ⅰ collagen servingas a template for apatite formation. A three-dimensional ploy-porous scaffoldwas developed by mixing HAC with poly(L-lactic acid) (PLA) using a thermally induced phase separation technique (TIPS). The rabbit periosteal cells were treated with 500 ng/ml of recombinant human bone morphogenetic protein 2(rhBMP-2), followed by seeded into pre-wet HAC-PLA scaffolds. Eighteen 3-month nude mice were implanted subcutaneously cell suspension (groupA, n=6), simple HAC-PLA scaffold (group B, n=6) and cell-biomaterial complex(group C, n=6) respectively.Results Using type Icollagen to template mineralization of calcium and phosphate in solution, we get HAC sandwich composite, mimicking the natural bone both in compositionand microstructure. The three dimensional HAC-PLA scaffold synthesized by TIPShad high porosity up to 90%, with pore size ranging from 50 μm to 300 μm. SEMexamination proved that the scaffold supported the adhesion and proliferation of the periosteal cells. Histology results showed new bone formation 8 weeks after implantation in group C. The surface of group A was smooth without neoplasma. Fibrous tissueinvasion occured in group B and no bone and cartilage formations were observed.Conclusion The constructed tissue engineering bone has emerged as another promising alternative for bone repair.