The peak period of cardiovascular disease (CVD) is around the time of awakening in the morning, which may be related to the surge of sympathetic activity at the end of nocturnal sleep. This paper chose 140 participants as study object, 70 of which had occurred CVD events while the rest hadn’t during a two-year follow-up period. A two-layer model was proposed to investigate whether hypnopompic heart rate variability (HRV) was informative to distinguish these two types of participants. In the proposed model, the extreme gradient boosting algorithm (XGBoost) was used to construct a classifier in the first layer. By evaluating the feature importance of the classifier, those features with larger importance were fed into the second layer to construct the final classifier. Three machine learning algorithms, i.e., XGBoost, random forest and support vector machine were employed and compared in the second layer to find out which one can achieve the highest performance. The results showed that, with the analysis of hypnopompic HRV, the XGBoost+XGBoost model achieved the best performance with an accuracy of 84.3%. Compared with conventional time-domain and frequency-domain features, those features derived from nonlinear dynamic analysis were more important to the model. Especially, modified permutation entropy at scale 1 and sample entropy at scale 3 were relatively important. This study might have significance for the prevention and diagnosis of CVD, as well as for the design of CVD-risk assessment system.
Photoplethysmography (PPG) is a non-invasive technique to measure heart rate at a lower cost, and it has been recently widely used in smart wearable devices. However, as PPG is easily affected by noises under high-intensity movement, the measured heart rate in sports has low precision. To tackle the problem, this paper proposed a heart rate extraction algorithm based on self-adaptive heart rate separation model. The algorithm firstly preprocessed acceleration and PPG signals, from which cadence and heart rate history were extracted respectively. A self-adaptive model was made based on the connection between the extracted information and current heart rate, and to output possible domain of the heart rate accordingly. The algorithm proposed in this article removed the interference from strong noises by narrowing the domain of real heart rate. From experimental results on the PPG dataset used in 2015 IEEE Signal Processing Cup, the average absolute error on 12 training sets was 1.12 beat per minute (bpm) (Pearson correlation coefficient: 0.996; consistency error: −0.184 bpm). The average absolute error on 10 testing sets was 3.19 bpm (Pearson correlation coefficient: 0.990; consistency error: 1.327 bpm). From experimental results, the algorithm proposed in this paper can effectively extract heart rate information under noises and has the potential to be put in usage in smart wearable devices.
Based on the imaging photoplethysmography (iPPG) and blind source separation (BSS) theory the author put forward a method for non-contact heartbeat frequency estimation. Using the recorded video images of the human face in the ambient light with Webcam, we detected the human face through software, separated the detected facial image into three channels RGB components. And then preprocesses i.e. normalization, whitening, etc. were carried out to a certain number of RGB data. After the independent component analysis (ICA) theory and joint approximate diagonalization of eigenmatrices (JADE) algorithm were applied, we estimated the frequency of heart rate through spectrum analysis. Taking advantage of the consistency of Bland-Altman theory analysis and the commercial Pulse Oximetry Sensor test results, the root mean square error of the algorithm result was calculated as 2.06 beat/min. It indicated that the algorithm could realize the non-contact measurement of heart rate and lay the foundation for the remote and non-contact measurement of multi-parameter physiological measurements.
The present paper is to analyze the trend of sinus heart rate RR interphase sequence after a single ventricular premature beat and to compare it with the two parameters, turbulence onset (TO) and turbulence slope (TS). Based on the acquisition of sinus rhythm concussion sample, we in this paper use a piecewise linearization method to extract its linear characteristics, following which we describe shock form with natural language through cloud model. In the process of acquisition, we use the exponential smoothing method to forecast the position where QRS wave may appear to assist QRS wave detection, and use template to judge whether current cardiac is sinus rhythm. And we choose some signals from MIT-BIH Arrhythmia Database to detect whether the algorithm is effective in Matlab. The results show that our method can correctly detect the changing trend of sinus heart rate. The proposed method can achieve real-time detection of sinus rhythm shocks, which is simple and easily implemented, so that it is effective as a supplementary method.
In order to solve the saturation distortion phenomenon of R component in fingertip video image, this paper proposes an iterative threshold segmentation algorithm, which adaptively generates the region to be detected for the R component, and extracts the human pulse signal by calculating the gray mean value of the region to be detected. The original pulse signal has baseline drift and high frequency noise. Combining with the characteristics of pulse signal, a zero phase digital filter is designed to filter out noise interference. Fingertip video images are collected on different smartphones, and the region to be detected is extracted by the algorithm proposed in this paper. Considering that the fingertip’s pressure will be different during each measurement, this paper makes a comparative analysis of pulse signals extracted under different pressures. In order to verify the accuracy of the algorithm proposed in this paper in heart rate detection, a comparative experiment of heart rate detection was conducted. The results show that the algorithm proposed in this paper can accurately extract human heart rate information and has certain portability, which provides certain theoretical help for further development of physiological monitoring application on smartphone platform.
The linear analysis for heart rate variability (HRV), including time domain method, frequency domain method and timefrequency analysis, has reached a lot of consensus. The nonlinear analysis has also been widely applied in biomedical and clinical researches. However, for nonlinear HRV analysis, especially for shortterm nonlinear HRV analysis, controversy still exists, and a unified standard and conclusion has not been formed. This paper reviews and discusses three shortterm nonlinear HRV analysis methods (fractal dimension, entropy and complexity) and their principles, progresses and problems in clinical application in detail, in order to provide a reference for accurate application in clinical medicine.
At present, the potential hazards of infrasound on heart health have been identified in previous studies, but a comprehensive review of its mechanisms is still lacking. Therefore, this paper reviews the direct and indirect effects of infrasound on cardiac function and explores the mechanisms by which it may induce cardiac abnormalities. Additionally, in order to further study infrasound waves and take effective preventive measures, this paper reviews the mechanisms of cardiac cell damage caused by infrasound exposure, including alterations in cell membrane structure, modulation of electrophysiological properties, and the biological effects triggered by neuroendocrine pathways, and assesses the impact of infrasound exposure on public health.
Heart rate variability (HRV) analysis technology based on an autoregressive (AR) model is widely used in the assessment of autonomic nervous system function. The order of AR models has important influence on the accuracy of HRV analysis. This article presents a method to determine the optimum order of AR models. After acquiring the ECG signal of 46 healthy adults in their natural breathing state and extracting the beat-to-beat intervals (RRI) in the ECG, we used two criteria, i.e. final prediction error (FPE ) criterion to estimate the optimum model order for AR models, and prediction error whiteness test to decide the reliability of the model. We compared the frequency domain parameters including total power, power in high frequency (HF), power in low frequency (LF), LF power in normalized units and ratio of LF/HF of our HRV analysis to the results of Kubios-HRV. The results showed that the correlation coefficients of the five parameters between our methods and Kubios-HRV were greater than 0.95, and the Bland-Altman plot of the parameters was in the consistent band. The results indicate that the optimization algorithm of HRV analysis based on AR models proposed in this paper can obtain accurate results, and the results of this algorithm has good coherence with those of the Kubios-HRV software in HRV analysis.
This paper aims to study the accuracy of cardiopulmonary physiological parameters measurement under different exercise intensity in the accompanying (wearable) physiological parameter monitoring system. SensEcho, an accompanying physiological parameter monitoring system, and CORTEX METALYZER 3B, a cardiopulmonary function testing system, were used to simultaneously collect the cardiopulmonary physiological parameters of 28 healthy volunteers (17 males and 11 females) in various exercise states, such as standing, lying down and Bruce treadmill exercise. Bland-Altman analysis, correlation analysis and other methods, from the perspective of group and individual, were used to contrast and analyze the two types of equipment to measure parameters of heart rate and breathing rate. The results of group analysis showed that the heart rate and respiratory rate data box charts collected by the two devices were highly consistent. The heart rate difference was (−0.407 ± 3.380) times/min, and the respiratory rate difference was (−0.560 ± 7.047) times/min. The difference was very small. The Bland-Altman plot of the heart rate and respiratory rate in each experimental stage showed that the proportion of mean ± 2SD was 96.86% and 95.29%, respectively. The results of individual analysis showed that the correlation coefficients of the whole-process heart rate and respiratory rate data were all greater than 0.9. In conclusion, SensEcho, as an accompanying physiological parameter monitoring system, can accurately measure the human heart rate, respiration rate and other key cardiopulmonary physiological parameters under various sports conditions. It can maintain good stability under various sports conditions and meet the requirements of continuous physiological signal collection and analysis application under sports conditions.
The purpose of this study is to discuss the feasibility of establishing capsaicin pain model and the possibility to evaluate different degrees of pain by the heart rate variability (HRV). It also aims to investigate the changes of autonomic nervous activity of volunteers during the process of pain caused by capsaicin. A total of 30 volunteers were selected, who were physically and mentally healthy, into the study. To assess the effects of capsaicin on the healthy volunteers, we recorded the Visual Analogue Scale (VAS) scores after the capsaicin stimulus. Additionally, the electrocardiogram signals and HRV analysis index before and after stimulating were also recorded, respectively. More specifically, the HRV analysis indexes included the time domain index, the frequency domain index, and the nonlinear analysis index. The results demonstrated that the activity of the autonomic nerves was enhanced in the process of capsaicin stimulus, especially for the sympathetic nerve, which exhibited a significantly differences in HRV. In conclusion, the degree of pain can be reflected by the HRV. It is feasible to establish a capsaicin pain model. And in further experiments, HRV analysis could be used as a reference index for quantitative evaluation of pain.