The chemical extraction method was used to prepare the rat uterine decellularized scaffolds, and to investigate the feasibility of preparing the extracellular matrix (ECM) hydrogel. The rat uterus were collected and extracted by 1%sodium dodecyl sulfate (SDS), 3% TritonX-100 and 4% sodium deoxycholate (SDC) in sequence. Scanning electron microscopy, histochemical staining and immunohistochemistry was used to assess the degree of decellularization of rat uterine scaffold. The prepared decellularized scaffold was digested with pepsin to obtain a uterine ECM hydrogel, and the protein content of ECM was determined by specific ELISA kit. Meanwhile, the mechanical characteristic of ECM hydrogel was measured. The results showed that the chemical extraction method can effectively remove the cells effectively in the rat uterine decellularized scaffold, with the ECM composition preserved completely. ECM hydrogel contains a large amount of ECM protein and shows a good stability, which provides a suitable supporting material for the reconstruction of endometrium in vitro.
Objective To investigate the improvement effects and mechanisms of composite chitosan (CS) hydrogel on traditional polypropylene (PP) mesh for repairing abdominal wall defects. Methods CS hydrogel was prepared via physical cross-linking and then combined with PP mesh to create a CS hydrogel/PP mesh composite. The internal structure and hydrophilicity of the composite were characterized using macroscopic observation, upright metallographic microscope, scanning electron microscopy, and water contact angle measurements. The performance of the composite (experimental group) in resisting cell adhesion and supporting cell infiltration was assessed through fibroblast (NIH-3T3) infiltration experiments and human umbilical vein endothelial cells (HUVECs) tube formation assays, and simple cells were used as control group. Finally, a bilateral abdominal wall defect model (1.5 cm×1.0 cm) was established in 18 Sprague Dawley rats aged 8-10 weeks, with the composite used on one side (experimental group) and PP mesh on the other side (control group). The effects on promoting wound healing, preventing adhesion, angiogenesis, and anti-inflammation were investigated through macroscopic observation, histological staining (HE and Masson staining), and immunohistochemical staining (CD31, CD68). Results The composite appeared as a pale yellow, transparent solid with a thickness of 2-3 mm, with the PP mesh securely encapsulated within the hydrogel. Scanning electron microscopy revealed that the hydrogel contained interconnected pores measuring 100-300 μm, forming a porous structure. Contact angle measurements indicated that CS hydrogel exhibited good hydrophilicity, while PP mesh was highly hydrophobic. In vitro cell culture experiments showed that DAPI staining indicated fewer positive cells in the experimental group after 1 day of culture, while the cells in control group covered the entire well plate. After 3 days of culture, the cells in experimental group were spherical and displayed uneven fluorescence, suggesting that the material could reduce cell adhesion while supporting cell infiltration. HUVECs tube formation experiments demonstrated an increase in cell numbers in experimental group with a trend towards tube formation, while cells in control group were sparsely distributed and showed no migration. In the rat abdominal wall defect repair experiment, results showed that after 1 week post-surgery, the experimental group had tissue and blood vessels infiltrating, and by 4 weeks, the integrity was well restored with significant regeneration of muscle and blood vessels, while the control group exhibited adhesions and incomplete healing. HE staining results indicated weaker cell infiltration in the experimental group, with cell density significantly higher than that of the control group at 2 and 4 weeks post-surgery (P<0.05). Masson staining revealed that collagen fibers in the experimental group were arranged neatly, with significantly increased collagen content at 2 weeks post-surgery (P<0.05), while collagen content was similar in both groups at 4 weeks (P>0.05). Immunohistochemical staining showed that CD31-positive cells were evenly distributed between muscle layers in the experimental group, whereas the control group exhibited notable defects. At 2 weeks after operation, the CD31-positive cell ratio was significantly higher than that in the control group (P<0.05); at 2 and 4 weeks after operation, the CD68-positive cell ratio in the experimental group was significantly lower than that in the control group (P<0.05). Conclusion CS hydrogel has a positive effect on preventing adhesions and promoting wound healing, exhibiting anti-inflammatory and pro-angiogenic properties during the healing process. This provides a promising strategy to address challenges related to abdominal adhesions and reconstruction.
Objective To construct a ultraviolet-cross-linkable chitosan-carbon dots-morin (NMCM) hydrogel, observe whether it can repair cartilage injury by in vivo and in vitro experiments, and explore the related mechanism. Methods The chitosan was taken to prepare the ultraviolet (UV)-cross-linkable chitosan by combining methacrylic anhydride, and the carbon dots by combining acrylamide. The two solutions were mixed and added morin solution. After UV irradiation, the NMCM hydrogel was obtained, and its sustained release performance was tested. Chondrocytes were separated from normal and knee osteoarticular (KOA) cartilage tissue donated by patients with joint replacement and identified by toluidine blue staining. The 3rd generation KOA chondrocytes were co-cultured with the morin solutions with concentrations of 12.5, 25.0, 50.0 µmol/L and NMCM hydrogel loaded with morin of the same concentrations, respectively. The effects of morin and NMCM hydrogel on the proliferation of chondrocytes were detected by cell counting kit 8 (CCK-8). After co-cultured with NMCM hydrogel loaded with 50 µmol/L morin, the level of collagen type Ⅱ (COL-Ⅱ) of KOA chondrocytes was detected by immunofluorescence staining, and the level of reactive oxygen species (ROS) was detected by 2, 7-dichlorodihydrofluorescein diacetate (DCFH-DA) probe. Twenty 4-week old Sprague Dawley rats were selected to construct a articular cartilage injury of right hind limb model, and were randomly divided into two groups (n=10). The cartilage injury of the experimental group was repaired with NMCM hydrogel loaded with 25 µmol/L morin, and the control group was not treated. At 4 weeks after operation, the repair of cartilage injury was observed by micro-CT and gross observation and scored by the International Cartilage Repair Association (ICRS) general scoring. The cartilage tissue and subchondral bone tissue were observed by Safranine-O-fast green staining and COL-Ⅱ immunohistochemistry staining and scored by ICRS histological scoring. The expressions of tumor necrosis factor α (TNF-α), nuclear factor κB (NK-κB), matrix metalloproteinase 13 (MMP-13), and COL-Ⅱ were detected by Western blot and real-time fluorescence quantitative PCR. Results NMCM hydrogels loaded with different concentrations of morin were successfully constructed. The drug release rate was fast in a short period of time, gradually slowed down after 24 hours, and the amount of drug release was close to 0 at 96 hours. At this time, the cumulative drug release rate reached 88%. Morin with a concentration ≤50 µmol/L had no toxic effect on chondrocytes, and the proliferation of chondrocytes improved under the intervention of NMCM hydrogel (P<0.05). NMCM hydrogel loaded with morin could increase the level of COL-Ⅱ in KOA chondrocytes (P<0.05) and reduce the level of ROS (P<0.05), but it did not reach the normal level (P<0.05). Animal experiments showed that in the experimental group, the articular surface was rough and the defects were visible at 4 weeks after operation, but the surrounding tissues were repaired and the joint space remained normal; in the control group, the articular surface was rougher, and no repair tissue was found for cartilage defects. Compared with the control group, the experimental group had more chondrocytes, increased COL-Ⅱ expression, and higher ICRS gross and histological scores (P<0.05); the relative expressions of MMP-13, NF-κB, and TNF-α protein and mRNA significantly decreased (P<0.05), and the relative expressions of COL-Ⅱ protein/COL-2a1 mRNA significantly increased (P<0.05). Conclusion NMCM hydrogel can promote chondrocytes proliferation, down regulate chondrocyte catabolism, resist oxidative stress, protect chondrocytes from cartilage injury, and promote cartilage repair.
Objective To prepare a novel hyaluronic acid methacrylate (HAMA) hydrogel microspheres loaded polyhedral oligomeric silsesquioxane-diclofenac sodium (POSS-DS) patricles, then investigate its physicochemical characteristics and in vitro and in vivo biological properties. Methods Using sulfhydryl POSS (POSS-SH) as a nano-construction platform, polyethylene glycol and DS were chemically linked through the “click chemistry” method to construct functional nanoparticle POSS-DS. The composition was analyzed by nuclear magnetic resonance spectroscopy and the morphology was characterized by transmission electron microscopy. In order to achieve drug sustained release, POSS-DS was encapsulated in HAMA, and hybrid hydrogel microspheres were prepared by microfluidic technology, namely HAMA@POSS-DS. The morphology of the hybrid hydrogel microspheres was characterized by optical microscope and scanning electron microscope. The in vitro degradation and drug release efficiency were observed. Cell counting kit 8 (CCK-8) and live/dead staining were used to detect the effect on chondrocyte proliferation. Moreover, a chondrocyte inflammation model was constructed and cultured with HAMA@POSS-DS. The relevant inflammatory indicators, including collagen type Ⅱ, aggrecan (AGG), matrix metalloproteinase 13 (MMP-13), recombinant A disintegrin and metalloproteinase with thrombospondin 5 (Adamts5), and recombinant tachykinin precursor 1 (TAC1) were detected by immunofluorescence staining and real-time fluorescence quantitative PCR, with normal cultured chondrocytes and the chondrocyte inflammation model without treatment as control group and blank group respectively to further evaluate their anti-inflammatory activity. Finally, by constructing a rat model of knee osteoarthritis, the effectiveness of HAMA@POSS-DS on osteoarthritis was evaluated by X-ray film and Micro-CT examination. Results The overall particle size of POSS-DS nanoparticles was uniform with a diameter of about 100 nm. HAMA@POSS-DS hydrogel microspheres were opaque spheres with a diameter of about 100 μm and a spherical porous structure. The degradation period was 9 weeks, during which the loaded POSS-DS nanoparticles were slowly released. CCK-8 and live/dead staining showed no obvious cytotoxicity at HAMA@POSS-DS, and POSS-DS released by HAMA@POSS-DS significantly promoted cell proliferation (P<0.05). In the chondrocyte anti-inflammatory experiment, the relative expression of collagen type Ⅱ mRNA in HAMA@POSS-DS group was significantly higher than that in control group and blank group (P<0.05). The relative expression level of AGG mRNA was significantly higher than that of blank group (P<0.05). The relative expressions of MMP-13, Adamts5, and TAC1 mRNA in HAMA@POSS-DS group were significantly lower than those in blank group (P<0.05). In vivo experiments showed that the joint space width decreased after operation in rats with osteoarthritis, but HAMA@POSS-DS delayed the process of joint space narrowing and significantly improved the periarticular osteophytosis (P<0.05). Conclusion HAMA@POSS-DS can effectively regulate the local inflammatory microenvironment and significantly promote chondrocyte proliferation, which is conducive to promoting cartilage regeneration and repair in osteoarthritis.
Objective To explore the effect of chitosan (CS) hydrogel loaded with tendon-derived stem cells (TDSCs; hereinafter referred to as TDSCs/CS hydrogel) on tendon-to-bone healing after rotator cuff repair in rabbits. Methods TDSCs were isolated from the rotator cuff tissue of 3 adult New Zealand white rabbits by Henderson step-by-step enzymatic digestion method and identified by multidirectional differentiation and flow cytometry. The 3rd generation TDSCs were encapsulated in CS to construct TDSCs/CS hydrogel. The cell counting kit 8 (CCK-8) assay was used to detect the proliferation of TDSCs in the hydrogel after 1-5 days of culture in vitro, and cell compatibility of TDSCs/CS hydrogel was evaluated by using TDSCs alone as control. Another 36 adult New Zealand white rabbits were randomly divided into 3 groups (n=12): rotator cuff repair group (control group), rotator cuff repair+CS hydrogel injection group (CS group), and rotator cuff repair+TDSCs/CS hydrogel injection group (TDSCs/CS group). After establishing the rotator cuff repair models, the corresponding hydrogel was injected into the tendon-to-bone interface in the CS group and TDSCs/CS group, and no other treatment was performed in the control group. The general condition of the animals was observed after operation. At 4 and 8 weeks, real-time quantitative PCR (qPCR) was used to detect the relative expressions of tendon forming related genes (tenomodulin, scleraxis), chondrogenesis related genes (aggrecan, sex determining region Y-related high mobility group-box gene 9), and osteogenesis related genes (alkaline phosphatase, Runt-related transcription factor 2) at the tendon-to-bone interface. At 8 weeks, HE and Masson staining were used to observe the histological changes, and the biomechanical test was used to evaluate the ultimate load and the failure site of the repaired rotator cuff to evaluate the tendon-to-bone healing and biomechanical properties. Results CCK-8 assay showed that the CS hydrogel could promote the proliferation of TDSCs (P<0.05). qPCR results showed that the expressions of tendon-to-bone interface related genes were significantly higher in the TDSCs/CS group than in the CS group and control group at 4 and 8 weeks after operation (P<0.05). Moreover, the expressions of tendon-to-bone interface related genes at 8 weeks after operation were significantly higher than those at 4 weeks after operation in the TDSCs/CS group (P<0.05). Histological staining showed the clear cartilage tissue and dense and orderly collagen formation at the tendon-to-bone interface in the TDSCs/CS group. The results of semi-quantitative analysis showed that compared with the control group, the number of cells, the proportion of collagen fiber orientation, and the histological score in the TDSCs/CS group increased, the vascularity decreased, showing significant differences (P<0.05); compared with the CS group, the proportion of collagen fiber orientation and the histological score in the TDSCs/CS group significantly increased (P<0.05), while there was no significant difference in the number of cells and vascularity (P>0.05). All samples in biomechanical testing failed at the repair site during the testing process. The ultimate load of the TDSCs/CS group was significantly higher than that of the control group (P<0.05), but there was no significant difference compared to the CS group (P>0.05). Conclusion TDSCs/CS hydrogel can induce cartilage regeneration to promote rotator cuff tendon-to-bone healing.
The biocompatible hydrogel was fabricated under suitable conditions with natural dextran and polyethylene glycol (PEG) as the reaction materials. The oligomer (Dex-AI) was firstly synthesized with dextran and allylisocyanate (AI). This Dex-AI was then reacted with poly (ethyleneglycoldiacrylate) (PEGDA) under the mass ratio of 4∶6 to get hydrogel (DP) with the maximum water absorption of 810%. This hydrogel was grafted onto the surface of medical catheter via diphenyl ketone treatment under ultraviolet (UV) initiator. The surface contact angle became lower from (97 ± 6.1)° to (25 ± 4.2)° after the catheter surface was grafted with hydrogel DP, which suggests that the catheter possesses super hydrophilicity with hydrogel grafting. The in vivo evaluation after they were implanted into ICR rats subcutaneously verified that this catheter had less serious inflammation and possessed better histocompatibility comparing with the untreated medical catheter. Therefore, it could be concluded that hydrogel grafting is a good technology for patients to reduce inflammation due to catheter implantation, esp. for the case of retention in body for a relative long time.
Polyvinyl alcohol (PVA) hydrogel was made for simulating human's soft tissue in our experiment. The image acquisition device is composed of an optical platform, a camera and its bracket and a light source. In order to study the law of soft tissue deformation under flexible needle insertion, markers were embedded into the soft tissue and their displacements were recorded. Based on the analysis of displacements of markers in X direction and Y direction, back propagation (BP) neural network was employed to model the displacement of Y direction for the markers. Compared to the experimental data, fitting degree of the neural network model was above 95%, the maximum relative error for valid data was limited to 30%, and the maximum absolute error was 0.8 mm. The BP neural network model was beneficial for predicting soft tissue deformation quantitatively. The results showed that the model could effectively improve the accuracy of flexible needle insertion into soft tissue.
ObjectiveTo prepare adipose-derived stem cells (ADSCs) and chitosan chloride (CSCl) gel complex to study the biocompatibility and the feasibility of repairing the wounds of deep partial thickness scald in rats. MethodsADSCs were prepared by enzymogen digestion and differential adherence method from the subcutaneous adipose tissue of SPF grade 6-week-old male Sprague Dawley (SD) rats. Temperature sensitive CSCl gel was prepared by mixing CSCl, β glycerol phosphate, and hydroxyethyl cellulose in 8∶2∶2.5 ratio. The proliferation of ADSCs was measured by cell counting kit 8 (CCK-8) assay and the survival of ADSCs was detected by the Live/Dead flurescent staining in vitro. A deep partial thickness burn animal model was made on the back of 72 SPF grade 6-week-old male SD rats by boiled water contact method and randomly divided into 3 groups (n=24). Group A was blank control group, group B was CSCl hydrogel group, group C was ADSCs/CSCl gel group. The wound closure rate at 3, 7, 14, 21 days was observed after operation. The number of inflammatory cells at 7 days and epidermal thickness at 21 days were observed by HE staining after operation. The angiogenesis at 7 days was evaluated by immunohistochemistry staining with CD31 expression. ResultsCSCl had a temperature sensitivity, at 4℃, the temperature-responsive hydrogel was liquid and became solid at 37℃. The CCK-8 assay and Live/Dead flurescent staining confirmed that ADSCs could grow and proliferate in the ADSCs/CSCl hydrogel complex. General observation showed the wound closure ratio in group C was superior to groups A and B after operation (P<0.05). HE staining showed that at 7 days after operation, the wound healing of the three groups entered fibrous proliferation stage. Collagen deposition and inflammatory cell infiltration were observed in the dermis of each group. The proportion of inflammatory cells in group C was significantly lower than that in groups A and B, and in group B than in group A (P<0.01). At 21 days after operation, the fibrous connective tissues of neoepithelium and dermis in groups B and C were arranged neatly, and fibroblasts and neocapillaries could be seen. In group A, neoepidermis could also be seen, but the fibrous connective tissues in dermis were arranged disorderly and sporadic capillaries could be seen. The thickness of neonatal epidermis in group C was significantly larger than that in groups A and B, and in group B than in group A (P<0.01). CD31 immunohistochemistry staining showed that the neovascularization could be seen in all groups. The number of neovascularization in group C was significantly higher than that in groups A and B, and in group B than in group A (P<0.05). ConclusionThe ADSCs/CSCl hydrogel complex has a good biocompatibility and possessed positive effects on promoting the deep partial thickness scald wound repairing in rats.
Objective To investigate the application potential of alginate-strontium (Sr) hydrogel as an injectable scaffold material in bone tissue engineering. Methods The alginate-Sr/-calcium (Ca) hydrogel beads were fabricated by adding 2.0wt% alginate sodium to 0.2 mol/L SrCl2/CaCl2 solution dropwise. Microstructure, modulus of compression, swelling rate, and degradability of alginate-Sr/-Ca hydrogels were tested. Bone marrow mesenchymal stem cells (BMSCs) were isolated from femoral bones of rabbits by flushing of marrow cavity. BMSCs at passage 5 were seeded onto the alginate-Sr hydrogel (experimental group) and alginate-Ca hydrogel (control group), and the viability and proliferation of BMSCs in 2 alginate hydrogels were assessed. The osteogenic differentiation of cells embeded in 2 alginate hydrogels was evaluated by alkaline phosphate (ALP) activity, osteoblast specific gene [Osterix (OSX), collagen type I, and Runx2] expression level and calcium deposition by fluorescent quantitative RT-PCR and alizarin red staining, Von Kossa staining. The BMSCs which were embeded in alginate-Ca hydrogel and cultured with common growth medium were harvested as blank control group. Results The micromorphology of alginate-Sr hydrogel was similar to that of the alginate-Ca hydrogel, with homogeneous pore structure; the modulus of compression of alginate-Sr hydrogel and alginate-Ca hydrogel was (186.53 ± 8.37) and (152.14 ± 7.45) kPa respectively, showing significant difference (t=6.853, P=0.002); there was no significant difference (t=0.737, P=0.502) in swelling rate between alginate-Sr hydrogel (14.32% ± 1.53%) and alginate-Ca hydrogel (15.25% ± 1.64%). The degradabilities of 2 alginate hydrogels were good; the degradation rate of alginate-Sr hydrogel was significantly lower than that of alginate-Ca hydrogel on the 20th, 25th, and 30th days (P lt; 0.05). At 1-4 days, the morphology of cells on 2 alginate hydrogels was spherical and then the shape was spindle or stellate. When three-dimensional cultured for 21 days, the DNA content of BMSCs in experimental group [(4.38 ± 0.24) g] was significantly higher than that in control group [(3.25 ± 0.21) g ] (t=8.108, P=0.001). On the 12th day after osteogenic differentiation, the ALP activity in experimental group was (15.28 ± 1.26) U/L, which was significantly higher than that in control group [(12.07 ± 1.12) U/L] (P lt; 0.05). Likewise, the mRNA expressions of OSX, collagen type I, and Runx2 in experimental group were significantly higher than those in control group (P lt; 0.05). On the 21th day after osteogenic differentiation, alizarin red staining and Von Kossa staining showed calcium deposition in 2 groups; the calcium nodules and phosphate deposition in experimental group were significantly higher than those in control group (P lt; 0.05). Conclusion Alginate-Sr hydrogel has good physicochemical properties and can promote the proliferation and osteogenic differentiation of BMSCs, so it is an excellent injectable scaffold material for bone tissue engineering.
ObjectiveTo study the ectopic osteogenesis and biocompatibility of bone morphogenetic protein 2 (BMP-2)-derived peptide P24 loaded chitosan-4-thio-butylamidine (CS-TBA) hydrogel.MethodsFirst, the CS-TBA/hydroxyapatite (HA) solution was prepared by using chitosan, 2-iminothiolane hydrochloride, and HA. Then, the different amount of P24 peptides were added to the CS-TBA/HA to prepare the CS-TBA/5%P24/HA and CS-TBA/10%P24/HA solutions. Finally, β-glycerophosphate disodium (β-GP) was added to the CS-TBA/HA, CS-TBA/5%P24/HA, and CS-TBA/10%P24/HA to prepare the CS-TBA/HA/β-GP, CS-TBA/5%P24/HA/β-GP, and CS-TBA/10%P24/HA/β-GP hydrogels, respectively. Eighteen Sprague Dawley female rats were randomly divided into 3 groups (n=6), which were injected into the back muscle pouches with equal volume CS-TBA/HA/β-GP hydrogel (group A), CS-TBA/5%P24/HA/β-GP hydrogel (group B), and CS-TBA/10%P24/HA/β-GP hydrogel (group C). The animals were sacrificed at 4 and 8 weeks and conducted micro-CT. The ability of biodegradation and osteogenesis of hydrogl was detected by trabecular thickness (Tb.Th), trabecular number (Tb.N), bone mineral density (BMD), and histological staining (HE and Masson).ResultsAll the rats survived to the time point of the harvest. Micro-CT results showed that the new bones gradually increased in each group after operation. At the same time, the new bone formation was more obvious in groups B and C than in group A, and with the increase of P24 concentration, new bone formation in group C was much more than that in group B. The Tb.Th, Tb.N, and BMD increased gradually in 3 groups, and the differences between 4 and 8 weeks were significant (P<0.05) except the Tb.Th in group A. At different time points, the Tb.Th, Tb.N, and BMD were significantly higher in groups B and C than in group A (P<0.05), and in group C was higher than in group B (P<0.05), showing significant differences between groups. Histological staining showed that the materials of groups B and C were biodegradable, and the osteogenic effect was increased with the increase of P24 concentration.ConclusionP24 peptide can improve the ectopic osteogenesis of CS-TBA hydrogel, and the 10% concentration is more effective.