Objective To study degradation of the antigen-extracted meniscus in PBS solution with no enzyme or with different enzymes. Methods Four types of enzymes (collagenase, hyaluronidase, trypsin, papain) were used to enzymolyze the antigen-extracted meniscus and the fresh meniscus for 3, 7, 15 and 30 days (37℃). The antigenextracted meniscus and the fresh meniscus were immersed in PBS solution (37℃) for 30 days. Weight loss measurement, UV spectrophotometry, and scanning electron microscopy (SEM) were used to characterize the degraded materials. Results The two types of the materials were remarkably digested under the enzymes, especially under trypsin. The degradation curves showed that the antigen-extracted meniscus was enzymolyzed less than the fresh meniscus. The degradation products were grouped as amino, peptide, and polyose by the analysis. Both of the materials could hardly behydrolyzed in PBS solution without the enzymes. The four different enzymes had different surface morphologies under the examination of SEM. Conclusion The antigen-extracted meniscus is enzymolyzed more slowly than the fresh meniscus in vitro, and the result can be used as a guideline to the further research.
The incidence of acute kidney injury (AKI) has increased rapidly in recent years. The causes of AKI are complex and diverse, and there is no effective treatment strategy. Reliable and stable animal models and in vitro models play an important role in the development and prevention of AKI. Focusing on rodent models and in vitro models, this review summarizes AKI models induced by ischemia, nephrotoxic drugs and urinary tract obstruction from three levels of prerenal, intrinsic renal and postrenal AKI.
Objective To study the differenation of adult marrow mesenchymal stem cells(MSCs) into vascular endothelial cells in vitro and to explore inducing conditions. Methods MSCs were isolated from adult marrow mononuclear cells by attaching growth. MSCs were divided into 4 groups to induce: the cells seeded at a density of 5×103/cm2 in 2% and 15% FCS LDMEM respectively (group1 and group 2), at a density of 5×104/cm2 in 2% and 15% FCS LDMEM respectively (group 3 and group 4); vascular endothelial growth factor(VEGF) supplemented with Bovine pituitary extract was used to induce the cell differentiation. The differentiated cells were identified by measuring surfacemarks (CD34, VEGFR2, CD31 and vWF ) on the 14th day and 21st day and performed angiogenesis in vitroon the 21st day.The cell proliferation index(PI)of different inducing conditions were measured. Results After induced in VEGF supplemented with Bovine pituitary extract, the cells of group 3 expressed the surface marks CD34, VEGFR-2, CD31 and vWF on the 14th day, the positive rates were 8.5%, 12.0%, 40.0% and 30.0% respectively, and on the 21st day the positive ratesof CD34 and VEGFR2 increased to 15.5% and 20.0%, while the other groups did not express these marks; the induced cells of group 3 showed low proliferating state(PI was 10.4%) and formed capillary-like structure in semisolid medium. Conclusion Adult MSCs can differentiate into vascular endothelial cellsafter induced by VEGF and Bovine pituitary extract at high cell densities and low proliferatingconditions,suggesting that adult MSCs will be ideal seed cells forthe therapeutic neovascularization and tissue engineering.
To investigate the effect of hepatocyte growth factor (HGF) on prol iferation of cultured human eccrine sweat gland epithel ial cells (hESGc) and the involvement of phosphorylation of ERK1/2. Methods hESGc were cultured in keratinocyte serum free medium (KSFM) and the first generation of hESGc was harvested. The expression of C-met was detected by immunocytochemistry. MTT assay was used to detect the effect of HGF on the prol iferation of hESGc. The cells were divided into blank group, control group and experimental group. The culture density was 2 × 103 cells/hole in control group and experimental group. Two hundred μL KSFM with HGF in different levels was added to every hole. hESGcwere cultured in KSFM with HGF at different levels (2, 20, 40 and 80 ng/mL) in experimental group, in KSFM without HGF incontrol group, and in KSFM without HGF and no hESGc in blank group. The cell prol iferation was observed in xperimental group 2 and 4 days later. Western blot was used to detect the expression of phosphorylated ERK1/2 at 40 ng/mL HGF after 0, 5, 30, 90 and 120 minutes. Results The results were positive for anti-C-met staining in the cytoplasm. HGF (40 ng/mL and 80 ng/mL) significantly improved the prol iferation of hESGc (P lt; 0.05). When cultured in the KSFM with 40 ng/mL HGF, the cell prol iferation rate and the absorbance were 74.2%, 0.239 3 ± 0.070 9 at 2 days and 74.8%, 0.287 8 ± 0.074 3 at 4 days; showing significant differences when compared with control group (P lt; 0.05). When cultured in KSFM with 80 ng/mL HGF, the cell prol iferation rate and the absorbance were 54.5%, 0.212 3 ± 0.059 2 at 2 days and 40.3%, 0.231 0 ± 0.056 7 at 4 days; showing significant differences when compared with control group (P lt; 0.05). The expression of p-ERK1/2 reached to the maximum after stimulation of 40 ng/mL HGF for 5 minutes, and relative integral absorbance (RIA) was 0.593 2 ± 0.192 2, increased 8.1 times compared with instant stimulation (P lt; 0.01). Conclusion HGF could induce the prol iferation of hESGc and activate the phosphorylation of ERK1/2 protein.
OBJECTIVE: To study the technique and method of urethral epithelium culture in vitro, so as to lay the groundwork for reconstructing a tissue engineering urethra and to provide an experimental model of urethral mucosa in physiological, pathological, toxicological and microbiological study. METHODS: The urethral mucosa from a young male New Zealand hare that had just been out of milk, was digested into single cell liquid with Dispase II and mixed enzyme, and the fibroblast were removed. After being seeded, the cells were cultured by using L929 cells as trophoderm. The medium was changed regularly and the cells were subcultured when they grew to mix together 80% to 90%. The cultured cells were analyzed with histochemistry, immunohistochemistry dyeing and flow cytometry examination. We observed the ultrastructure of cells with scanning electron microscope and transmission electron microscope. RESULTS: The primary cultured cells fused when they had been cultured for about ten days. They were the same in size like road rocks. The cultured cells were all epithelial cells without fibroblasts and were diploid cells. The cells could be subcultured 11-13 generations, and could survive 50-60 days. CONCLUSION: The urethral epithelium of young New Zealand hare can be cultured in vitro and maintain the ability to proliferate within a certain time. The study result not only sets a role in reconstructing a tissue engineering urethral mucosa, but also provides an experimental model for the research of urethral mucosa in vitro.
In order to investigate the compatibility and growth between the tendon cell or fibroblast of rabbit and artificial materials, the combined-culture of the two cells with the carbon fiber, terylene and chitin was observed respectively. Results showed as following: in vitro, the compatibility of carbon fiber with these two cells was well, cell-adhesion ability was good as well. Few cells grew on terylene. Chitin inhibited the growth of either cells. No matter the tendon cell or the fibroblast, the amount of cells adhering on the carbon fiber was far more than that on terylene or chitin. When the three materials were interlaced together, the collagen fibers produced by the cells were arranged in direction parallel to the carbon fibers. As the time elapsed, the cells on the carbon fiber distributed evenly and enveloped the material in network-like fashion, this suggested that carbon fiber was a good material for producing living artificial tendon and ligament.
Objective To research the anti-fungal spectrum and activity of the cream containing 1% naftifine-0.25% ketoconazole compared with other two creams that contain of 2% ketoconazole and of 1% terbinafine, respectively. Methods The agar diffusion method was used to judge drug sensitivity. Twenty-nine isolates of pathogenic fungi belonging to 11 species from clinic and three species of Malassezia standard stains were enrolled into the experiment. Organism suspension of each species was spread on the surface of the plate of the optimal media containing 2% agar. Then wells were made in the plate and three types of cream were put in each well respectively. After seven-day incubation, the diameter of the inhibition zone around the well full of each cream was observed and recorded. Results The inhibition zone around the well full of 1% naftifine-0.25% ketoconazole cream for all experiment isolates (Dermatophytes, Candida spp., Sporothrix schenkii, Fonsecaea pedrosoi, Fusarium graminearum, Malassezia furfur, M. globosa and M. sympodialis) was observed, with the mean diameter of 45.46mm. Similarly, the mean diameter of inhibition zone of 2% ketoconazole cream for all experiment isolates was 23.92mm. About 1% terbinafine cream, the mean diameter was 29.81mm but there was no inhibition zone observed around Candida krusei and Candida albicans mycelial-form. There were significant significances for mean diameters of the inhibition zone when comparing 1% naftifine-0.25% ketoconazole cream with 2% ketoconazole cream (P=0.000) and with 1% terbinafine cream (P=0.000). Conclusion The anti-fungal spectrum of 1% naftifine-0.25% ketoconazole cream is wider than that of 1% terbinafine cream. The antifungal activity of 1% naftifine-0.25% ketoconazole cream is ber than that of 2% ketoconazole cream and 1% terbinafine cream.
Objective To compare the myogenic differentiation abil ity in vitro of rabbit adipose-derived stem cells (ADCSs) from different sites so as to provide ideal seed cells for repair and reconstruction of urinary tract. Methods Adipose tissues were obtained from the nape of the neck, post peritoneum, and vicinity of epididymis of a 4-month-old male New Zealand rabbit and ADSCs were harvested through collagenase digestion. ADSCs were purified by differential attachment method. The protein marker CD44 of rabbit ADSCs was used to identify the stem cells by immunocytochemistry, then the5th generation of ADSCs were induced to differentiate into adipogenic, osteogenic, and myogenic cells. Multi- differentiation was confirmed by Oil red O staining, von Kossa staining, and RT-PCR. Myogenic differentiation abil ities of ADSCs from 3 different sites were compared between the control group (L-DMEM medium containing 10%FBS) and the experimental group (myogenic medium) by RT-PCR method. Results ADSCs could be easily isolated from adipose tissues of the nape of the neck, post peritoneum, and vicinity of epididymis. ADSCs displayed a typical cobblestone morphology. Brown particles could be seen in ADSCs by CD44 immunocytochemistry staining. Oil red O staining showed red fat drops in ADSCs after 14 days of adipogenic culture. Black matrix could be seen in ADSCs by von Kossa staining after 28 days of osteogenic culture. RT-PCR detection showed moderate α-actin expression in the control group and b α-actin expression in the experimental group after 42 days of myogenic culture. The growth rate of α-actin from the adipose tissue of post peritoneum (28.622% ± 4.879%) was significantly lower (P lt; 0.05) than those from the adipose tissues of the nape of the neck (35.471% ± 3.434%) and vicinity of epididymis (38.446% ± 4.852%). Conclusion The ADSCs from different sites show different myogenic differentiation abil ities in vitro. ADSCs from the adipose tissues of the nape of the neck and vicinity of epididymis can be used as ideal seed cells for tissue engineering of lower urinary tract.
Objective To explore the relationship between Beclin-1 and the development of pancreatic ductal adenocarcinoma (PDAC). Methods ① Twenty-five PDAC specimens and 20 matched adjacent normal pancreatic tissues were obtained after radical surgery between April 2009 and November 2009 in West China Hospital of Sichuan University. Beclin-1 mRNA and protein expressions were examined by using real-time PCR and immunohistochemistry, respectively. Correlations between expressions of Beclin-1 protein with clinical data of PDAC patients were evaluated. ② PDAC cells were divided into 2 groups, cells of transfection group were transfected with PLenO-WPI-Beclin-1 vector, and cells of non-transfection group didn’t transfected with PLenO-WPI-Beclin-1 vector. Expressions levels of Beclin-1 mRNA in the 2 groups were detected by real-time PCR at 24 hours and 48 hours after transfection. ③ PDAC cells were divided into 3 groups, cells of transfection group were transfected with PLenO-WPI-Beclin-1 vector, cells of empty vector group transfected with PLenO-WPI, cells of blank control group didn’t accepted any vector. OD value was detected by MTT once a day during 1–7 days after transfection. Results ① Expression levels of Beclin-1 mRNA and its protein were significantly lower in PDAC tissue than those of adjacent normal pancreatic tissues (P<0.05). Increased Beclin-1 expression was associated with early TNM stage of Ⅰ and Ⅱ(P<0.05) and negative distant metastasis (P=0.011). ② At the same time point of 24 hours and 48 hours after transfection, the expression levels of Beclin-1 mRNA were higher in transfection group than those of non-transfection group (P<0.05). ③ MTT assay showed that PANC-1 cell proliferation ability was lower in the transfection group compared to the blank control group and empty vector groups in vitro on day 4–7 after transfection (P<0.05), but there was no significant in the cell proliferation ability among the 3 groups on day 1, 2, and 3 (P>0.05). Conclusions Down regulation of Beclin-1 and autophagy inhibition play an important role in the tumorigenesis and development of PDAC. Activating autophagy via overexpression of Beclin-1 may be a potential treatment for some PDACs and warrants further investigation.
Objective Choose polylactide-co-glycolide/hydroxyapatite (PLGA/HA) and porous phosphate calcium (PPC) as the object that we will study, compare their degradabality and choose one as a suitable scaffold for rib reconstruction. Methods All the experiments were divided into PLGA/HA group and CPC group. Degradabality experiment in exvivo: put the two scaffold which have the same size into 0.9% NaCl, keep sterile, then put the container into warm cage,get out and weigh them in 2, 4, 8, 12 and 24 weeks, compare the different speed of the two scaffold. Degradability experiment in vivo: put the two scaffold which have the same size under the skin of the rabbit, and weigh them in 2, 4, 8, 12 and 24 weeks, the tissue around the scaffold was examinzed by HE and the scaffold was examined by electron scanning microscope. Results Micro-CT and Scanning electron microscopy shows that CPC group had better structure (1101.2228±0.6184 mg/ccm vs. 1072.5523±0.7442 mg/ccm)and porosity(70.26%±0.45% vs.72.82%±0.51%)than PLGA/HA group; The result of degradabality experiment in vitro shows that the speed of the two scaffolds was slow. It is at 24 weeks that the degradability is obvious,and the PLGA/HA group degraded a lot which was 60%. The result of degradabality experiment in vivo shows that the speed of degradabality of PLGA/HA group was faster than that is in the 0.9% Nacl, also was faster than that of CPC group which was 96%.The reponse of tissue around the PLGA/HA was more sever than that of CPC group which is in favour of the growth of cells. Conclusion As for the reconstruction of large defect of rib, CPC is more suitable than PLGA/HA.