ObjectiveTo investigate the difference of DNA methylation before and after bariatric surgery.MethodThe relevant literatures of the research on the changes of DNA methylation level and gene expression regulation in blood and tissues before and after bariatric surgery were retrieved and reviewed.ResultsDNA methylation was an important method of epigenetic regulation in organisms and its role in bariatric surgery had been paid more and more attention in recent years. Existing studies had found that there were changes of DNA methylation in blood and tissues before and after bariatric surgery. The degree of methylation varies with different follow-up time after bariatric surgery and the same gene had different degrees of methylation in different tissues, and some even had the opposite results.ConclusionsDNA methylation levels before and after bariatric surgery are different in different tissues. And studies with larger sample size and longer follow-up time are needed, to further reveal relationship among DNA methylation, obesity, and bariatric surgery.
Objective To investigate the possible mechanism of arsenic trioxide (As2O3) inducing P16 gene demethylation and transcription regulation in the retinoblastoma (RB) Cell Line Y79. Methods The induced growth inhibition of Y79 cell was assayed by MTT; The DNA content of Y79 cell was analyzed by flow cytometry after being exposed to As2O3; the methylation status of the P16 gene in Y79 cell line before and after treatment with As2O3 was detected by the nestedmethylation specific PCR and DNA sequencing; the mRNA of P16,DNA methyltransferases (DNMT3A and 3B)gene were determined by RT-PCR. Results As2O3 was able to inhibit the growth of Y79 cell and increase the cell number in G0-G1 phase;P16 gene was not expressed in Y79 cell line and As2O3 can induce itrsquo;s mRNA expression;after 48 hour disposal of As2O3,the methylation levelof P16 gene was apparently attenuated in Y79 cell line,the expression of DNMT3A and DNMT3B was obviously down-regulated. Conclusions P16 gene is the hypermethylation in the retinoblastoma cell line Y79, and As2O3 can inhibite the methylation of P16 gene and upregulate the expression of p16 gene mRNA which inhibits the proliferation of Y79 cell by inducing the G0-G1 arrest, by inhibiting the expression of DNA methyltransferases.
ObjectiveTo explore the clinical significance of promoter hypermethylation of O6-methylguanine-DNA methyltransferase (MGMT) in cholangiocarcinoma. MethodsPromoter methylation status of MGMT gene and expression of MGMT protein were detected in cholangiocarcinoma by methylationspecific PCR and immunohistochemical staining, respectively. ResultsAberrant methylation of MGMT gene was detected in 17 patients (47.2%). Twentyone cases showed negative immunoreactivities. Of 21 patients with negative MGMT expression, 14 patients had aberrant methylation of MGMT gene. In 15 patients with positive MGMT expression, aberrant methylation of MGMT gene was only found in three cases. There was a negative correlation between promoter methylation status of MGMT gene and the expression of MGMT protein (rs=-0.816, Plt;0.05). Promoter methylation status of MGMT gene was related to depth of invasion, degree of differentiation, and TNM stage (Plt;0.05), but not to age of patient, gender, pathological type, and lymph node metastasis (Pgt;0.05). ConclusionsHypermethylation of MGMT promoter is a frequency molecular event in cholangiocarcinoma and may be involved in carcinogenesis. Methylation status of MGMT gene may be used to evaluate malignant degree of cholangiocarcinoma.
ObjectiveTo explore the role of DNA methylation in the pathogenesis of cholangiocarcinoma and its progress as a therapeutic target for cholangiocarcinoma.MethodThe relevant literatures at home and abroad in recent years about the DNA methylation and cholangiocarcinoma were reviewed.ResultsMethylation is a frequent event in cholangiocarcinoma and effect the occurrence and development of cholangiocarcinogenesis. DNA methylation inhibitors reactivate tumor suppressor genes.ConclusionsDNA methylation is closely related to the cholangiocarcinogenesis. Despite there is no effective clinical therapeutics and diagnosis at present, with further study, DNA methylation is expected to be one of the new target to treatment and diagnosis this disease.
Lung cancer is the most common malignant tumor in the world and the leading cause of cancer-related death. Due to the lack of effective early diagnosis methods, the prognosis of lung cancer is poor, but compared with advanced lung cancer, the survival rate of early lung cancer is greatly improved. Therefore, early diagnosis of lung cancer is crucial. As a major epigenetic modification, DNA methylation plays an important role in the development of lung cancer. A large number of studies have shown that detection of tumor suppressor gene methylation is an ideal early diagnosis method for lung cancer. With the continuous improvement of detection technology, methylation detection of multiple genes can be achieved. And it is found that multi-gene methylation combined detection of tissue samples obtained by minimally invasive operation such as puncture of diseased tissue and puncture of lymph node tissue, as well as the noninvasive samples such as peripheral blood, bronchoalveolar lavage fluid and sputum have higher detection rate and higher sensitivity and specificity than single gene methylation. It is an ideal method for early diagnosis of lung cancer.
ObjectiveTo summarize the current research status of the relationship between DNA methylation and liver regeneration.MethodThe related literatures at home and abroad were searched to review the studies on relationships between the methylation level of liver cells, regulation of gene expression, and methylation related proteins and liver regeneration.ResultsThe DNA methylation was an important epigenetic regulation method in vivo and its role in the liver regeneration had been paid more and more attentions in recent years. The existing studies had found the epigenetic phenomena during the liver regeneration such as the genomic hypomethylation, methylation changes of related proliferating genes and DNA methyltransferase and UHRF1 regulation of the liver regeneration.ConclusionsThere are many relationships between DNA methylation and liver regeneration. Regulation of liver regeneration from DNA methylation level is expected to become a reality in the near future.
Objective To investigate the expression of the histone deacetylases 1( HDAC1) and the level of whole histone acetylation and methylation in lung T cells of asthmatic rats, and investigate their role in the pathogenesis of asthma.Methods Sixteen wistar rats were randomly divided into a control group and an asthma group( n =8 in each group) . The rats was sensitized with ovalbumin( OVA) and challenged with aerosol OVA to establish asthma model. The asthmatic ratmodel was confirmed by measurement of pulmonary function, histochemical staining, HE staining, and the levels of interleukin-4 ( IL-4 ) , interferon-gamma ( IFN-γ) and immunoglobulin E( IgE) in serum and bronchoalveolar lavage fluid ( BALF) . T cells were isolated fromrat lungs and the purity was identified. The expression of the HDAC1, the level of whole histone H3 and H4 acetylation, and whole H3K9 dimethylation were analyzed by Western blot in lung T cells. Results Compared with the control group, the protein expression of HDAC1 was significantly lower( 0. 465±0. 087 vs 0. 790 ±0. 076, P lt;0. 05) in lung T cells of the asthma group. No significant differences werefound in regard to the level of whole histone H3 and H4 acetylation and whole H3K9 dimethylation betweenthe two groups. Conclusions HDAC1 in lung T cells may be involved in the pathogenesis of asthma.Histone modification by HDAC1 may be a specific eventwith gene transcription which may not be associated with asthma.
ObjectiveTo explore the relationship between aberrant promoter CpG islands methylation status of E-cadherin gene and hepatocarcinogenesis, and to assess its significance in clinical early diagnosis of hepatocellular carcinoma (HCC). MethodsSurgically resected specimens, among which cancerous and corresponding noncancerous liver tissues from 34 HCC patients, 10 liver cirrhosis from patients without HCC and normal liver tissues from 4 accidental deaths, were collected in West China Hospital. Breast cancer cell line MDA-MB-435 with promoter CpG islands hypermethylation of E-cadherin as positive control was gained from the Cell Bank of Chinese Academy of Sciences in Shanghai. The methylation status of promoter CpG island of E-cadherin gene was detected by nested methylationspecific polymerase chain reaction (nested-MSP). ResultsE-cadherin gene promoter CpG islands hypermethylation was found in 61.76% (21/34) of cancerous tissues, in 29.41% (10/34) of noncancereous tissues from the 34 HCC patients and in 50.00% (5/10) liver cirrhosis from patients without HCC. None of the 4 normal liver samples were detected E-cadherin mehylation positive. Moreover, the methylation of E-cadherin gene was significantly more frequent in 34 cancerous than that in corresponding noncancerous liver tissues (Plt;0.05), which had no significant difference between the 10 cirrhotic samples and cancerous or non-cancerous liver tissues (Pgt;0.05). In 34 cancerous samples, with the combination of both biomarkers of E-cadherin methylation and AFP400 (serum AFP level at a cutoff of 400 μg/L), the diagnostic sensitivity of HCC increased to 82.35%. ConclusionsThe aberrant promoter methylation of E-cadherin gene may play a vital role in the development and progression of HCC. Moreover, it might be an early event in hepatocarcinogensis. It is of high value to make further study to confirm the significance of E-cadherin gene methylation in clinical diagnosis and therapy.
ObjectiveRecent advancements in the researches on cholangiocarcinoma (CC) related genes methylation in CC were reviewed and the clinical significances of aberrant DNA methylation for the diagnosis and treatment of CC were discussed. MethodsRelevant literatures about the relation between CC-related genes methylation and CC published recently were collected and reviewed. ResultsThe genesis of CC resulted from abnormal expressions of many genes. Many researches had shown that the abnormal methylation of CC-related genes had a close relation with CC. Epigenetic alteration had been acknowledged as an important mechanism contributing to early CC carcinogenesis. ConclusionsAbnormal methylation of CC-related genes is related with CC. The detection of CC-related genes methylation might provide new specific biomarkers for early noninvasive diagnosis of this disease. Using epigenetic agents such as azacytidine to modulate the activities of DNA methyltransferase and reverse the methylation status of CC-related gene might be an attractive strategy for future treatment of CC, which could be combined with conventional therapies.
Objective To study the differential expression profiling of the transcripts modified by m5C methylation in a rat model of N-methyl-D-aspartate (NMDA)-induced retinal excitotoxicity. MethodsA total of 65 Sprague Dawley male rats aged 7-8 weeks were randomly divided into two groups: normal control group and NMDA group. The right eye (model eye) of rats in the NMDA group were injected with 50.0 mmol/L of NMDA 3 μl in the vitreous cavity, while in the normal control group, equal volume of normal saline was injected into the vitreous cavity. After 1 week of the injection, the optic nerve conduction function of rats was detected by visual evoked potential. The whole structure of rat retina was observed by hematoxylin-eosin staining, and the thickness of each retinal layer and the number of retinal ganglion cell layer were detected. The number of β3 tubulin immunofluorescence positive cells was detected by immunofluorescence staining on retinal stretched preparation. Total RNA was extracted from the retinas of normal control group and NMDA group, and high-throughput m5C modified RNA was sequenced, and bioinformatics analysis was performed. The relative expression levels of SLFN3, PLXNB3, CD36 and HIC2 mRNA in retina were detected by real-time quantitative polymerase chain reaction. The comparison between the two groups was performed using an unpaired t test. ResultsThe P1 latency of control group and NMDA group were (117.86±6.48) and (148.46±3.78) ms, and the amplitudes were (42.57±2.41) and (8.68±0.63) μV, respectively. Compared with the normal control group, the latency period was prolonged and the amplitude was significantly decreased in the NMDA group, with statistical significance (P<0.001). In normal control group, retinal ganglion cells (RGC) were uniformly arranged with large round nuclei. In NMDA group, the volume of retinal RGC was atrophied and the number of RGC was reduced. The total retinal thickness in the control group and NMDA group was (207.51±12.76) μm and (187.51±12.54) μm, respectively. The number of β3 tubulin positive cells was 79.86±6.56 and 29.36±2.16, respectively. Compared with normal control group, the total retinal thickness and the number of β3 tubulin positive cells in NMDA group were decreased, with statistical significance (P<0.001). Compared with the control group, 576 differentially expressed m5C mRNA were screened in the NMDA group, among which 230 up-regulated and 346 down-regulated genes were detected, respectively. The results of biological information analysis showed that compared with the control group, the upregulated m5C mRNA in the NMDA group was mainly involved in biological processes such as perception and cell-cell adhesion, and was mainly concentrated in the cytokine-cytokine receptor interaction and neural active ligand-receptor interaction pathway. The biological processes in which down-regulated m5C mRNA was mainly involved in biological processes such as G-protein-coupled receptor signaling pathway and cell communication, which were mainly concentrated in primary immune deficiency pathway and neural active ligand-receptor interaction pathway. Real-time quantitative polymerase chain reaction detection results showed that compared with the normal control group, the relative expression levels of SLFN3 and PLXNB3 mRNA in the retina of rats in NMDA group were significantly increased, while the relative expression levels of CD36 and HIC2 mRNA were significantly decreased, with statistical significance (P<0.05). ConclusionIn NMDA induced retinal excitatory toxicity rat models, m5C modified retinal transcriptome showed abnormal expression.