Traditional bone repair materials, such as titanium, polyetheretherketone, and calcium phosphate, exhibit limitations, including poor biocompatibility and incongruent mechanical properties. In contrast, ceramic-polymer composite materials combine the robust mechanical strength of ceramics with the flexibility of polymers, resulting in enhanced biocompatibility and mechanical performance. In recent years, researchers worldwide have conducted extensive studies to develop innovative composite materials and manufacturing processes, with the aim of enhancing the bone repair capabilities of implants. This article provides a comprehensive overview of the advancements in ceramic-polymer composite materials, as well as in 3D printing and surface modification techniques for composite materials, with the objective of offering valuable insights to improve and facilitate the clinical application of ceramic-polymer composite materials in the future.
Cardiovascular disease is one of the most common causes of death. Coronary artery stent implantation has been the most important method to cure coronary disease and inhibit angiostegnosis. However, restenosis and thrombus at the site of implanting cardiovascular devices remains a significant problem in the practice of interventional cardiology. Recently, lots of studies have revealed that endothelial impairment is considered as one of the most important mechanisms contributing to restenosis. As a result, the method of accelerating endothelial regeneration at the injury site could prevent restenosis and thrombus. Considering the surface modification of cardiovascular stent implantation, this paper summarizes the progress on this direction, especially for the prevention of cardiovascular restenosis. Furthermore, this paper also proposes the methods and the future developing prospects for accelerating in vivo re-endothelialization at the site of intravascular stent with different biological molecules.
Objective To summarize the current progress in the genetic modification of vascular prostheses and to look forward to the future of genetic modification in vascular prostheses. Methods PubMed onl ine search with the key words of “vascular prostheses, gene” was undertaken to identify articles about the genetic modification of vascular prostheses. Then these articles were reviewed and summarized. Results To improve long-term patency of vascular prostheses, various genes were transfected into seeded cells. The antithrombosis activity of local vessels increased. Conclusion Progresses in tissue engineering and molecular biology make possible endothel ial ization and genetic modification of vascular prostheses. However, because most relevant researches are still basic experiments, further study is needed before cl inical appl ication.
The surface morphology of titanium metal is an important factor affecting its hydrophilicity and biocompatibility, and exploring the surface treatment strategy of titanium metal is an important way to improve its biocompatibility. In this study, titanium (TA4) was firstly treated by large particle sand blasting and acid etching (SLA) technology, and then the obtained SLA-TA4 was treated by single surface treatments such as alkali-heat, ultraviolet light and plasma bombardment. According to the experimental results, alkali-heat treatment is the best treatment method to improve and maintain surface hydrophilicity of titanium. Then, the nanowire network morphology of titanium surface and its biological property, formed by further surface treatments on the basis of alkali-heat treatment, were investigated. Through the cell adhesion experiment of mouse embryonic osteoblast cells (MC3T3-E1), the ability of titanium material to support cell adhesion and cell spreading was investigated after different surface treatments. The mechanism of biological activity difference of titanium surface formed by different surface treatments was investigated according to the contact angle, pit depth and roughness of the titanium sheet surface. The results showed that the SLA-TA4 titanium sheet after a treatment of alkali heat for 10 h and ultraviolet irradiation for 1 h has the best biological activity and stability. From the perspective of improving surface bioactivity of medical devices, this study has important reference value for relevant researches on surface treatment of titanium implantable medical devices.
Objective To investigate the memory amelioration of the Alzheimer disease (AD)model rat after being transplanted the single neural stem cells(NSC) and NSC modified with human brain-derived neurotrophic factor(hBDNF) gene. Methods Forty SD rats were divided evenly into 4 groups randomly. The AD model rats were made by cutting unilaterallythe fibria fornix of male rats. Ten to twelve days after surgery, the genetically modified and unmodified NSC were implanted into the lateral cerebral ventricle of group Ⅲ and group Ⅳ respectively. Two weeks after transplantation, theamelioration of memory impairment of the rats was detected by Morris water maze. Results The average escaping latency of the group Ⅲ and group Ⅳ (41.84±21.76 s,25.23±17.06 s respectively) was shorter than that of the group Ⅱ(70.91±23.67 s) (Plt;0.01). The percentage of swimming distance inthe platform quadrant in group Ⅲ (36.9%) and in group Ⅳ(42.0%) was higherthan that in the group Ⅱ(26.0%) (Plt;0.01). More marginal and random strategies were used in group Ⅱ.The percentage of swimming distance in the platform quadrant in group Ⅳ was also greater than that in group Ⅲ(Plt;0.05). There were no significant differences in the average escaping latency, the percentage of swimming distance in the platform quadrant and the probe strategy between group Ⅳ and group Ⅰ(Pgt;0.05).More lineal and oriented strategies were used in group Ⅳ. Conclusion The behavioral amelioration of AD model rat was obtained by transplanting single NSC and hBDNF-gene-modified NSC. The effect of the NSC group modified with hBDNF gene is better than that of the groupⅢ.
ObjectiveTo review the research status of anti-infective graft materials and analyze their application prospects, in order to provide inspiration for the development of anti-infective vascular endograft. MethodThe research on endovascular anti-infective grafts at home and abroad was reviewed. ResultsThe anti-infective capability of endovascular graft could be achieved through main approaches like modification of the bulk material, surface modification, or a combination of both. In terms of bulk material modification, this paper delved into the creation of antibacterial composite materials by incorporating other materials into primary materials like metals (such as Mg, Zn), biologically derived materials (such as chitosan, silk fibroin, bacterial cellulose), and synthetic polymers (such as graphene and its derivatives, polyurethane, polylactic acid). Examples included Mg-Nd-Zn-Zr alloy, bacterial cellulose/chitosan nanocrystal composites, and chitosan/silk fibroin composites. For surface modifications, inorganic coatings (such as silver, copper, and nitrides) and organic coatings (such as antibiotics, antimicrobial peptides, and anti-infection polymers) had shown promising antibacterial effects in experiments. ConclusionsThe future research focus is how to synthesize the composite graft material with the mechanical properties of ordinary graft and the cell, blood compatibility and antibacterial properties through nano technology. At the same time, how to synthesize coatings with stable long-term anti-infection and anti-bacterial biofilm performance is also considered to be an important direction of future research.
ObjectiveTo obtain rat hair follicle stem cells (rHFSCs) which can constantly and highly express vascular endothelial growth factor 165 (VEGF165), and to observe the expression of VEGF165 gene in rat HFSCs. MethodsThe cirri skin of 1-week-old Sprague Dawley rat was harvested and digested by using combination of Dispase and type IV collagenases. The bulge was isolated under microscope. The rHFSCs were cultured by tissue block method. After purified by rapid adhering on collagen type IV, the growth curve of different generations rHFSCs was drawn. The cells were identified by immunofluorescence staining and real time quantitative PCR (RT-qPCR) analysis that tested the expression level of correlated genes. Lentivirus of pLV-internal ribosome entry site (IRES)-VEGF165-enhanced green fluorescent protein (EGFP) (experimental group) and pLV-IRES-EGFP empty vector (control group) was packaged by calcium transfected method and the rHFSCs were transfected. The green fluorescent protein expression was observed by inverted fluorescence microscope, and VEGF165 mRNA and protein expressions were detected using RT-PCR and Western blot. ResultsThe rHFSCs which were isolated, cultured, and purified were like the "slabstone", and had strong adhesion ability and colony formation ability. The purified cells were in latent growth phase at 2-3 days; they were in exponential growth phase at 5-6 days. The expressions of cytokeration 15 (CK15), integrin α6, and integrin β1 (markers of HFSCs) were positive by immunocytochemistry. The RT-qPCR analysis showed that CK15, CK19, integrin α6, and integrin β1 expressed highly, but CD34 (a marker of epidermal stem cells) and CK10 (a marker of keratinocyte) expressed lowly. After 14 days, the transfection efficiency was up to 85.76%±1.91%. RT-PCR analysis and Western blot showed that VEGF165 mRNA and protein expressions were positive in experimental group, and were negative in control group. ConclusionThe rHFSCs with high purity and strong proliferation ability can be obtained by using microscope combined with tissue cultivation and rapid cell adhesion on collagen type IV. The rHFSCs with high expression of VEGF165 can be successfully obtained by lentiviral transfection. This method provides good seeding cells for tissue engineering to construct artificial hair follicles, blood vessels, and skins.
ObjectiveTo investigate whether the technical modifications regarding the risk factors related to the partial necrosis of the distally pedicled sural flap could reduce the partial necrosis rate of the flap.MethodsA clinical data of 254 patients (256 sites) (modified group), who used modified technique to design and cut distally pedicled sural flaps to repair the distal soft tissue defects of the lower limbs between April 2010 and December 2019, was retrospectively analyzed. Between April 2001 and March 2010, 175 patients (179 sites) (control group) who used the traditional method to design and cut the skin flap to repair the distal soft tissue defects of the lower limbs were compared. Various technical modifications were used to lower the top-edge of the flap, reduce the length-width ratio (LWR) of the flap and width of the skin island. There was no significant difference in gender, age, etiology, duration from injury to operation, site and area of the soft tissue defect between groups (P>0.05). The length and width of the skin island and adipofascial pedicle, the total length of the flap and LWR, and the pivot point position were measured and recorded. The top-edge of the flap was determined according to the division of 9 zones in the posterior aspect of the lower limb. The occurrence of partial necrosis of the flap and the success rate of defect reconstruction were observed postoperatively.ResultsThere was no significant difference in the length and width of the skin island, the length of the adipofascial pedicle, total length and LWR of the flap, and pivot point position of the flap between groups (P>0.05). The width of the adipofasical pedicle in modified group was significant higher than that in control group (t=–2.019, P=0.044). The top-edge of 32 flaps (17.88%) in control group and 31 flaps (12.11%) in modified group were located at the 9th zone; the constituent ratio of the LWR more than 5∶1 in modified group (42.58%, 109/256) was higher than that in control group (42.46%, 76/179); and the constituent ratio of width of skin island more than 8 cm in control group (59.78%, 107/179) was higher than that in modified group (57.42%, 147/256). There was no significant difference in the above indicators between groups (P>0.05). In control group, 155 flaps (86.59%) survived completely, 24 flaps (13.41%) exhibited partial necrosis. Among them, 21 wounds healed after symptomatic treatments, 3 cases were amputated. The success rate of defects reconstruction was 98.32% (176/179). In modified group, 241 flaps (94.14%) survived completely, 15 flaps (5.86%) exhibited partial necrosis. Among them, 14 wounds healed after symptomatic treatments, 1 case was amputated. The success rate of defect reconstruction was 99.61% (255/256). The partial necrosis rate in modified group was significantly lower than that in control group (χ2=7.354, P=0.007). There was no significant difference in the success rate between the two groups (P=0.310). All patients in both groups were followed up 1 to 131 months (median, 9.5 months). All wounds in the donor and recipient sites healed well.ConclusionThe partial necrosis rate of the distally based sural flap can be decreased effectively by applying personalized modified technical for specific patients.
Objective To summarize the research progress of biocompatibility and surface modification of nickel titanium shape memory alloys (Ni-Ti SMA). Methods The relative researches about Ni-Ti SMA at home and abroad were reviewed, collated, analyzed, and summarized. Results At present, Ni-Ti SMA as an internal fixation material has been widely used in clinic. It has the following advantages: the super elasticity, the shape memory characteristic, the good wear resistance, and the strong corrosion resistance. It also can effectively avoid the internal fixator rupture caused by stress shielding. After surface modification, the biocompatibility of Ni-Ti SMA has been improved. Conclusion The Ni-Ti SMA is the most promising alloy material for the long-term internal fixator because of its excellent material properties.
Objective To observe the expressions of DNA methyltransferases (DNMTs) 1, 3a and 3b in retinoblastoma (RB). Methods Sixty-two RB samples and six normal retinas were studied, including 17 poorly differentiated and 45 well differentiated samples; 16 invasive and 46 non-invasive samples. The expressions of DNMT1, 3a, and 3b, and Ki-67 were detected using immunohistochemical analysis. Brown staining of nuclei was considered to represent the positive stain for DNMT1, 3a and 3b, and ki-67, blue staining as negative. The level of high expression of nuclear staining was, positive cells in DNMT1ge;65%, in DNMT3age;60% and in DNMT3bge;40%. The correlations of DNMT1, 3a and 3b expression in RB samples, and MIB-1 labeling index were analyzed. Results Viewed under the light microscope, negative expressions of DNMT1, 3a and 3b were demonstrated in normal retinas, however, positive expression was observed in RB samples, with 100% in DNMT1, 98% in DNMT3a and 92% in DNMT3b. Comparing well differentiated RB samples with poorly differentiated samples, significant differences were found in high expression of DNMT1 (chi;2=12.57,P<0.05) and DNMT3a (chi;2=10.54,P<0.05); also in the positive cells of DNMT1 (U=179,P<0.05) and DNMT3a (U=198,P<0.05). No significant difference was found comparing high expression (chi;2=1.5,P>0.05) and positive cells (U=307,P>0.05) of DNMT3b. When comparing invasive tumor tissues with non-invasive tumors, significant differences were shown between high expression (chi;2=4.72,P<0.05) and positive cells comparing DNMT1 (U=236,P<0.05). No significant difference was shown in high expression (chi;2=3.53,0.84; P>0.05) in DNMT3a and DNMT3b, or in comparison with positive cells (U=338,257;P>0.05). The expression of DNMTs was positively correlated with the MIB-1 labeling index in RB tissues (R2=0.554,0.376,0.219;P<0.05). Conclusion There are high expressions of DNMT1,3a,and 3b in RB.