west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "motor imagery" 21 results
  • Research on performance of motor-imagery-based brain-computer interface in different complexity of Chinese character patterns

    The traditional paradigm of motor-imagery-based brain-computer interface (BCI) is abstract, which cannot effectively guide users to modulate brain activity, thus limiting the activation degree of the sensorimotor cortex. It was found that the motor imagery task of Chinese characters writing was better accepted by users and helped guide them to modulate their sensorimotor rhythms. However, different Chinese characters have different writing complexity (number of strokes), and the effect of motor imagery tasks of Chinese characters with different writing complexity on the performance of motor-imagery-based BCI is still unclear. In this paper, a total of 12 healthy subjects were recruited for studying the effects of motor imagery tasks of Chinese characters with two different writing complexity (5 and 10 strokes) on the performance of motor-imagery-based BCI. The experimental results showed that, compared with Chinese characters with 5 strokes, motor imagery task of Chinese characters writing with 10 strokes obtained stronger sensorimotor rhythm and better recognition performance (P < 0.05). This study indicated that, appropriately increasing the complexity of the motor imagery task of Chinese characters writing can obtain stronger motor imagery potential and improve the recognition accuracy of motor-imagery-based BCI, which provides a reference for the design of the motor-imagery-based BCI paradigm in the future.

    Release date:2021-08-16 04:59 Export PDF Favorites Scan
  • A Novel Channel Selection Method for Brain-computer Interface Based on Relief-SBS

    Regarding to the channel selection problem during the classification of electroencephalogram (EEG) signals, we proposed a novel method, Relief-SBS, in this paper. Firstly, the proposed method performed EEG channel selection by combining the principles of Relief and sequential backward selection (SBS) algorithms. And then correlation coefficient was used for classification of EEG signals. The selected channels that achieved optimal classification accuracy were considered as optimal channels. The data recorded from motor imagery task experiments were analyzed, and the results showed that the channels selected with our proposed method achieved excellent classification accuracy, and also outperformed other feature selection methods. In addition, the distribution of the optimal channels was proved to be consistent with the neurophysiological knowledge. This demonstrates the effectiveness of our method. It can be well concluded that our proposed method, Relief-SBS, provides a new way for channel selection.

    Release date: Export PDF Favorites Scan
  • Research progress and prospect of collaborative brain-computer interface for group brain collaboration

    As the most common active brain-computer interaction paradigm, motor imagery brain-computer interface (MI-BCI) suffers from the bottleneck problems of small instruction set and low accuracy, and its information transmission rate (ITR) and practical application are severely limited. In this study, we designed 6-class imagination actions, collected electroencephalogram (EEG) signals from 19 subjects, and studied the effect of collaborative brain-computer interface (cBCI) collaboration strategy on MI-BCI classification performance, the effects of changes in different group sizes and fusion strategies on group multi-classification performance are compared. The results showed that the most suitable group size was 4 people, and the best fusion strategy was decision fusion. In this condition, the classification accuracy of the group reached 77%, which was higher than that of the feature fusion strategy under the same group size (77.31% vs. 56.34%), and was significantly higher than that of the average single user (77.31% vs. 44.90%). The research in this paper proves that the cBCI collaboration strategy can effectively improve the MI-BCI classification performance, which lays the foundation for MI-cBCI research and its future application.

    Release date:2021-08-16 04:59 Export PDF Favorites Scan
  • Three-class Motor Imagery Classification Based on Optimal Sub-band Features of Independent Components

    In the study of the scalp electroencephalogram (EEG)-based brain-computer interface (BCI), individual differences and complex background noise are two main factors which affect the stability of BCI system. For different subjects, therefore, optimization of BCI system parameters is necessary, including the optimal designing of temporal and spatial filters parameters as well as the classifier parameters. In order to improve the accuracy of BCI system, this paper proposes a new BCI information processing method, which combines the optimization design of independent component analysis spatial filter (ICA-SF) with the multiple sub-band features of EEG signals. The four subjects' three-class motor imagery EEG (MI-EEG) data collected in different periods were analyzed with the proposed method. Experimental results revealed that, during the inner and outer cross-validation of single subject as well as the subject-to-subject validation, the proposed multiple sub-band method always had higher average classification accuracy compared to those with single-band method, and the maximum difference could achieve 6.08% and 5.15%, respectively.

    Release date: Export PDF Favorites Scan
  • Control of intelligent car based on electroencephalogram and neurofeedback

    To improve the performance of brain-controlled intelligent car based on motor imagery (MI), a method based on neurofeedback (NF) with electroencephalogram (EEG) for controlling intelligent car is proposed. A mental strategy of MI in which the energy column diagram of EEG features related to the mental activity is presented to subjects with visual feedback in real time to train them to quickly master the skills of MI and regulate their EEG activity, and combination of multi-features fusion of MI and multi-classifiers decision were used to control the intelligent car online. The average, maximum and minimum accuracy of identifying instructions achieved by the trained group (trained by the designed feedback system before the experiment) were 85.71%, 90.47% and 76.19%, respectively and the corresponding accuracy achieved by the control group (untrained) were 73.32%, 80.95% and 66.67%, respectively. For the trained group, the average, longest and shortest time consuming were 92 s, 101 s, and 85 s, respectively, while for the control group the corresponding time were 115.7 s, 120 s, and 110 s, respectively. According to the results described above, it is expected that this study may provide a new idea for the follow-up development of brain-controlled intelligent robot by the neurofeedback with EEG related to MI.

    Release date:2018-02-26 09:34 Export PDF Favorites Scan
  • Analysis of imagery motor effective networks based on dynamic partial directed coherence

    The research on brain functional mechanism and cognitive status based on brain network has the vital significance. According to a time–frequency method, partial directed coherence (PDC), for measuring directional interactions over time and frequency from scalp-recorded electroencephalogram (EEG) signals, this paper proposed dynamic PDC (dPDC) method to model the brain network for motor imagery. The parameters attributes (out-degree, in-degree, clustering coefficient and eccentricity) of effective network for 9 subjects were calculated based on dataset from BCI competitions IV in 2008, and then the interaction between different locations for the network character and significance of motor imagery was analyzed. The clustering coefficients for both groups were higher than those of the random network and the path length was close to that of random network. These experimental results show that the effective network has a small world property. The analysis of the network parameter attributes for the left and right hands verified that there was a significant difference on ROI2 (P = 0.007) and ROI3 (P = 0.002) regions for out-degree. The information flows of effective network based dPDC algorithm among different brain regions illustrated the active regions for motor imagery mainly located in fronto-central regions (ROI2 and ROI3) and parieto-occipital regions (ROI5 and ROI6). Therefore, the effective network based dPDC algorithm can be effective to reflect the change of imagery motor, and can be used as a practical index to research neural mechanisms.

    Release date:2020-04-18 10:01 Export PDF Favorites Scan
  • Study on feature modulation of electroencephalogram induced by motor imagery under multi-modal stimulation

    Event-related desynchronization (ERD) is the basic feature of electroencephalogram (EEG), and the brain-computer interface based on motor imagery (MI-BCI) with the foundation of the analysis of ERD is of great significance in motor function recovery. The valid ERD characteristics extracted from EEG are the key to the performance of the BCI, so the study of which kind of stimulation mode can prompt subjects to generate more obvious characteristics of ERD is crucial. Four different stimulation modes are designed in this paper, and the effects of motion imagery tasks under static text stimulation, grip video stimulation, serial motion video stimulation of fingers as well as serial motion video stimulation of fingers with sound on the characteristics of ERD are analyzed. Combining the analysis of time-frequency spectrum, the power spectral density curve, ERD value and brain topographic map, it is shown that the ERD under serial motion video stimulation of fingers and serial motion video stimulation of fingers with sound modes is much stronger and has wider range of activation, and the BCI based on the analysis of ERD will have a better effect on practical application. As a result, the recognition and acceptance of the users of BCI system are improved in some extent.

    Release date:2018-08-23 03:47 Export PDF Favorites Scan
  • Channel Selection for Multi-class Motor Imagery Based on Common Spatial Pattern

    High-density channels are often used to acquire electroencephalogram (EEG) spatial information in different cortical regions of the brain in brain-computer interface (BCI) systems. However, applying excessive channels is inconvenient for signal acquisition, and it may bring artifacts. To avoid these defects, the common spatial pattern (CSP) algorithm was used for channel selection and a selection criteria based on norm-2 is proposed in this paper. The channels with the highest M scores were selected for the purpose of using fewer channels to acquire similar rate with high density channels. The DatasetⅢa from BCI competition 2005 were used for comparing the classification accuracies of three motor imagery between whole channels and the selected channels with the present proposed method. The experimental results showed that the classification accuracies of three subjects using the 20 channels selected with the present method were all higher than the classification accuracies using all 60 channels, which convinced that our method could be more effective and useful.

    Release date: Export PDF Favorites Scan
  • Classifying Electroencephalogram Signal Using Under-determined Blind Source Separation and Common Spatial Pattern

    One of the key problems of brain-computer interfaces (BCI) is low signal-to-noise ratio (SNR) of electroencephalogram (EEG) signals. It affects recognition performance. To remove the artifact and noise, block under-determined blind source separation method based on the small number of channels is proposed in this paper. The non-stationary EEG signals are turned into block stationary signals by piecewise. The mixing matrix is estimated by the second-order under-determined blind mixing matrix identification. Then, the beamformer based on minimum mean square error separates the original sources of signals. Eventually, the reconstructed EEG for mixed signals removes the unwanted components of source signals to achieve suppressing artifact. The experiment results on the real motor imagery BCI indicated that the block under-determined blind source separation method could reconstruct signals and remove artifact effectively. The accuracy of motor imagery task of BCI has been greatly improved.

    Release date: Export PDF Favorites Scan
  • Single trial classification of motor imagery electroencephalogram based on Fisher criterion

    In order to realize brain-computer interface (BCI), optimal features of single trail motor imagery electroencephalogram (EEG) were extracted and classified. Mu rhythm of EEG was obtained by preprocessing, and the features were optimized by spatial filtering, which are estimated from a set of data by method of common spatial pattern. Classification decision can be made by Fisher criterion, and classification performance can be evaluated by cross validation and receiver operating characteristic (ROC) curve. Optimal feature dimension determination projected by spatial filter was discussed deeply in cross-validation way. The experimental results show that the high discriminate accuracy can be guaranteed, meanwhile the program running speed is improved. Motor imagery intention classification based on optimized EEG feature provides difference of states and simplifies the recognition processing, which offers a new method for the research of intention recognition.

    Release date:2018-10-19 03:21 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content